# USB5630数据深集卡

产品使用手册

V6.00.12





# ■ 关于本手册

本手册为阿尔泰科技推出的 USB5630 数据采集卡的用户手册,其中包括快速上手、产品功能概述、设备特性、AD 模拟量输入、DA 模拟量输出、数字量输入输出、计数器功能、产品保修、修改历史等。

文档版本: V6.00.12



# 目 录

| 关 <sup>-</sup> | 于本手   | ≅册           | 1  |
|----------------|-------|--------------|----|
| 1              | 央速上   |              | 6  |
| 1.1            | 产品    | 包装内容         | 6  |
| 1.2            | 安装    | 指导           | 6  |
|                | 1.2.1 | 注意事项         | 6  |
|                | 1.2.2 | 应用软件         | 6  |
|                | 1.2.3 | 软件安装指导       | 6  |
|                | 1.2.4 | 硬件安装指导       | 6  |
| 1.3            | 设备    | 接口定义         | 7  |
| 1.4            | 板卡位   | 使用参数         | 7  |
| 2              | 功能概   | 斌            | 8  |
| 2.1            | 产品作   | 简介           | 8  |
| 2.2            | 性能    | 描述           | 8  |
| 2.3            | 规格    | 参数           | 8  |
|                | 2.3.1 | 产品概述         | 8  |
|                | 2.3.2 | AD 模拟量输入     | 9  |
|                | 2.3.3 | DA 模拟量输出     | 9  |
|                | 2.3.4 | 数字量输入输出/PFI  | 10 |
|                | 2.3.5 | 计数器          | 10 |
|                | 2.3.6 | 以太网特性(出厂默认值) | 11 |
|                | 2.3.7 | 板卡功耗         | 11 |
|                | 2.3.8 | 板卡特性         | 11 |
| 3              | 设备特   | · 性          | 12 |
| 3.1            | 板卡    | 外形图          | 12 |
| 3.2            | 板卡    | 尺寸图          | 13 |
| 3.3            | 接口知   | 定义           | 16 |
| 3.4            | 网络你   | 信息配置         | 19 |
| 4 A            | D 模i  | 以量输入         | 20 |
| 4.1            | AD写   | 力能框图         | 20 |
| 4.2            | AD 杉  | 交准           | 20 |
| 4.3            | AD 娄  | 数据格式及码值换算    | 20 |

|      | 4.3.1                  | AD ℤ      | 双极性模拟量输入的数据格式  | 21 |
|------|------------------------|-----------|----------------|----|
|      | 4.3.2                  | AD 详      | 单极性模拟量输入的数据格式  | 21 |
| 4.4  | AD (                   | 言号连挂      | 妾              | 21 |
|      | 4.4.1                  | 浮接值       | 信号源            | 22 |
|      | 4                      | .4.1.1    | 差分模式(DIFF)     | 23 |
|      | 4                      | .4.1.2    | 无参考地单端模式(NRSE) | 25 |
|      | 4                      | .4.1.3    | 参考地单端模式(RSE)   | 25 |
|      | 4.4.2                  | 接地值       | 信号源            | 26 |
|      | 4                      | .4.2.1    | 差分模式(DIFF)     | 26 |
|      | 4                      | .4.2.2    | 无参考地单端模式(NRSE) | 27 |
| 4.5  | AD 数                   | 数据采集      | 集注意事项          | 28 |
|      | 4.5.1                  | 使用化       | 低阻抗信号源         | 28 |
|      | 4.5.2                  | 使用酒       | 高质量电缆          | 28 |
|      | 4.5.3                  | 降低机       | 相邻通道间的电压差      | 28 |
|      | 4.5.4                  | 在相邻       | 邻信号通道间插入地信号    | 28 |
|      | 4.5.5                  | 选择作       | 合适的采样速率        | 28 |
| 4.6  | AD È                   | 单通道 4     | 与多通道数据采集排列方式   | 28 |
|      | 4.6.1                  | 单通过       | 道数据采集排列方式      | 28 |
|      | 4.6.2                  | 多通过       | 道数据采集排列方式      | 28 |
| 4.7  | AD P                   | 内时钟和      | 和外时钟功能         | 29 |
|      | 4.7.1                  | 内时针       | 钟功能            | 29 |
|      | 4.7.2                  | 外时钟       | 钟功能            | 29 |
|      | 4.7.3                  | 时钟轴       | 偷入输出的连接        | 29 |
| 4.8  | AD $\bar{\mathcal{I}}$ | <b>聚样</b> |                | 30 |
|      | 4.8.1                  | 按需        | 单点采样           | 30 |
|      | 4.8.2                  | 有限,       | 点采样            | 30 |
|      | 4.8.3                  | 连续为       | 采样             | 31 |
| 4.9  | AD 角                   | 虫发功能      | と<br> ビ        | 32 |
|      | 4.9.1                  | 触发值       | 信号的连接          | 32 |
|      | 4.9.2                  | AD 触      | <b></b><br>    | 32 |
|      | 4.9.3                  | 软件角       | 触发功能           | 33 |
|      | 4.9.4                  | 模拟角       | 触发功能           | 33 |
|      | 4                      | .9.4.1    | 边沿触发功能         | 33 |
|      | 4.9.5                  | 数字角       | 触发功能           | 34 |
|      | 4                      | .9.5.1    | 边沿触发功能         | 34 |
| 4 10 | ) 名卡                   | :同步的      | 约实现方法          | 34 |

| 5 I | DA 模拟量输出               | 36 |
|-----|------------------------|----|
| 5.1 | DA 功能框图                | 36 |
| 5.2 | DA 信号连接                | 36 |
| 5.3 | DA 校准                  | 36 |
| 5.4 | DA 数据格式及码值换算           | 37 |
|     | 5.4.1 DA 双极性模拟量输出的数据格式 | 37 |
|     | 5.4.2 DA 单极性模拟量输出的数据格式 | 37 |
| 5.5 | DA 内时钟与外时钟功能           | 38 |
| 5.6 | DA 采样                  | 38 |
| 5.7 | DA 触发功能                | 38 |
| 6   | 数字量输入输出                | 39 |
| 6.1 | 数字量输入输出功能框图            | 39 |
| 6.2 | DI 数字量输入的连接方式          | 39 |
| 6.3 | DO 数字量输出的连接方式          | 39 |
| 7   | 计数器                    | 40 |
| 7.1 | 计数器信号连接                | 40 |
| 7.2 | 各工作方式下门控信号作用           | 40 |
| 7.3 | 减法计数工作方式               | 41 |
|     | 7.3.1 方式 0: 计数结束产生中断   | 41 |
|     | 7.3.2 方式 1: 可编程单次脉冲    | 41 |
|     | 7.3.3 方式 2: 频率发生器      | 42 |
|     | 7.3.4 方式 3: 方波发生器      | 42 |
|     | 7.3.5 方式 4: 软件触发选通     | 43 |
|     | 7.3.6 方式 5: 硬件触发选通     | 43 |
| 7.4 | 加法计数工作方式               | 43 |
|     | 7.4.1 方式 0: 计数结束产生中断   | 43 |
|     | 7.4.2 方式 1: 可编程单次脉冲    | 44 |
|     | 7.4.3 方式 2: 频率发生器      | 44 |
|     | 7.4.4 方式 3: 方波频率发生器    | 45 |
|     | 7.4.5 方式 4: 软件触发选通     | 45 |
|     | 7.4.6 方式 5: 硬件触发选通     | 46 |
| 8   | 保修                     | 47 |
| 8.1 | 保修                     | 47 |



| 附表  | ₹A: | 各种标识、 | 概念的命名约定 | ••••• | ••••• | ••••• | 48 |
|-----|-----|-------|---------|-------|-------|-------|----|
| 8.3 | 返修  | 注意事项  |         |       |       |       | 47 |
| 8.2 | 技术  | 支持与服务 |         |       |       |       | 47 |

# ■ 1 快速上手

本章主要介绍初次使用 USB5630 需要了解和掌握的知识,以及需要的相关准备工作,可以帮助用户熟悉 USB5630 使用流程,快速上手。

### 1.1 产品包装内容

打开 USB5630 板卡包装后,用户将会发现如下物品:

- USB5630 板卡一个。
- 阿尔泰科技软件光盘一张,该光盘包括如下内容:
  - 1)、本公司所有产品软件安装包,用户可在 USB 文件夹下找到 USB5630。
  - 2)、用户手册(pdf 格式电子版文档)。

## 1.2 安装指导

#### 1.2.1 注意事项

- 1)、先用手触摸机箱的金属部分来移除身体所附的静电,也可使用接地腕带。
- 2)、取卡时只能握住卡的边缘或金属托架,不要触碰电子元件,防止芯片受到静电的危害。
- 3)、检查板卡上是否有明显的外部损伤如元件松动或损坏等。如果有明显损坏,请立即与销售 人员联系,切勿将损坏的板卡安装至系统。

#### 1.2.2 应用软件

用户在使用 USB5630 时,可以根据实际需要安装相关的应用开发环境,例如 Microsoft Visual Studio、NI LabVIEW 等。

#### 1.2.3 软件安装指导

在不同操作系统下安装 USB5630 的方法一致,在本公司提供的光盘中含有安装程序 Setup.exe,用户双击此安装程序按界面提示即可完成安装。

#### 1.2.4 硬件安装指导

通过 RJ45 或 USB 接口连接板卡与系统,开机后系统会自动弹出硬件安装向导,用户可选择系统自动安装或手动安装。

- 1)、系统自动安装按提示即可完成。
- 2)、手动安装过程如下:
  - ① 选择"从列表或指定位置安装",单击"下一步"。
  - ② 选择"不要搜索。我要自己选择要安装的驱动程序",单击"下一步"。
  - ③ 选择"从磁盘安装",单击"浏览"选择 INF 文件。
- 注: INF 文件默认存储安装路径为 C:\ART\USB5630\Driver\INF\Win2K&XP&Vista 或WIN32&WIN64; 或安装光盘的 x:\ART\USB5630\Driver\INF\Win2K&XP&Vista 或WIN32&WIN64。
  - ④ 选择完 INF 文件后,单击"确定"、"下一步"、"完成",即可完成手动安装。



# 1.3 设备接口定义

USB5630 相关接口信息可以参见本手册《<u>接口定义</u>》章节。

# 1.4 板卡使用参数

- ◆ 工作温度范围: 0℃ ~ 50℃
- ◆ 存储温度范围: -20℃ ~ +70℃

# ■ 2 功能概述

本章主要介绍 USB5630 的系统组成及基本特性,为用户整体了解 USB5630 的相关特性提供参考。

### 2.1 产品简介

USB5630 是一款多功能数据采集卡。该板卡提供 64 路模拟量单端输入或 32 路差分输入, 4 路模拟量输出, 8 路数字量输入输出, 16 路 PFI, 2 路 32 位多功能计数器。本板卡的主要应用场合为:电子产品质量检测、信号采集、过程控制、伺服控制。

### 2.2 性能描述

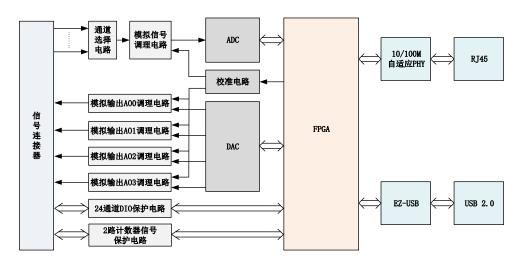



图 2-2-1 USB5630 系统框图

USB5630 系统框图主要由模拟信号调理电路、ADC 模块、DAC 模块、自校准模块、数字信号保护电路、FPGA 控制模块、10/100M 自适应 PHY、EZ-USB 模块组成。

模拟信号调理电路实现对多通道输入进行选择、放大、滤波、差分转单端,把输入信号转换到 匹配 AD 采集范围的信号。

AO 部分的模拟信号调理电路实现对 DAC 输出进行放大、阻抗变换等功能。

数字信号保护电路实现对数字输入输出信号进行电平转换、过压限流保护等功能。

10/100M 自适应 PHY 与 EZ-USB 模块实现网口及 USB 总线的通信功能。

# 2.3 规格参数

#### 2.3.1 产品概述

| 产品型号 | USB5630      |
|------|--------------|
| 产品系列 | 数据采集卡        |
| 总线类型 | USB 2.0 或以太网 |
| 操作系统 | XP、Win7      |



| 板卡尺寸 | 180mm(长) * 120mm(宽) |
|------|---------------------|
|------|---------------------|

# 2.3.2 AD 模拟量输入

| ADC 分辨率                                | 16 位(Bit)                        |                      |  |
|----------------------------------------|----------------------------------|----------------------|--|
| 输入通道                                   | 64 路单端、32 路差分                    |                      |  |
| 输入量程                                   | ±10V 、±5V 、±2.5                  | 5V、0~10V 、0~5V       |  |
| 采样方式                                   | 异步采样                             |                      |  |
| 过压保护                                   | ±12V                             |                      |  |
| 校准方式                                   | 软件自动校准                           |                      |  |
| 전 1사 구                                 | 单通道:最大采档                         | <b>羊频率为 500 KSps</b> |  |
| <b>采样率</b>                             | 多通道:各通道最大采样频率=500 KSps/设置的采样通道总数 |                      |  |
| 存储器深度                                  | 存储器深度 8K 字(点)FIFO 存储器            |                      |  |
| 增益误差                                   | ±0.05% Max @FSR                  |                      |  |
| 偏移误差                                   | ±1LSB Max                        |                      |  |
| 采样模式                                   | 按需单点采样、有限点采样、连续采样                |                      |  |
| 触发源                                    | 软件强制触发、模拟触发、数字触发                 |                      |  |
| 触发方向                                   | 下降沿触发、上升沿触发、变化触发                 |                      |  |
| 61111111111111111111111111111111111111 | ATR 输入范围                         | ±10V                 |  |
| 触发源输入范围                                | DTR 输入范围                         | 标准 TTL 电平            |  |
| 输入阻抗                                   | 10ΜΩ                             |                      |  |
| 程控增益                                   | 1 倍、2 倍、4 倍、8 倍                  |                      |  |
| 时钟源                                    | 内时钟、外时钟                          |                      |  |
| 外时钟输入范围                                | 电平信号                             |                      |  |

# 2.3.3 DA 模拟量输出

| 输出通道  | 4 路                                   |
|-------|---------------------------------------|
| 转换精度  | 16 位                                  |
| 采样方式  | 同步输出                                  |
| 输出量程  | 0~5V、0~10V 、±5V、±10V、±2.5V、-2.5~7.5 V |
| 转换速率  | 单通道最高 1MSps,多通道最高 500KSps             |
| 存储器深度 | 8K字(点)FIFO 存储器                        |
| 采样模式  | 按需单点采样、有限点采样、连续采样                     |
| 触发源   | 软件强制触发、模拟触发、数字触发                      |
| 触发方向  | 下降沿触发、上升沿触发、变化触发                      |



| <i>ь µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ</i> | ATR 输入范围 | ±10V      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 触发源输入范围                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DTR 输入范围 | 标准 TTL 电平 |
| 时钟源                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 内时钟、外时钟  |           |

# 2.3.4 数字量输入输出/PFI

| 通道数     | 共 24 路                                        |       |       |  |  |
|---------|-----------------------------------------------|-------|-------|--|--|
|         | 8 路 DIO(P0.<07>),16 路 PFI(PFI<07>/P1,PFI<815> |       |       |  |  |
| 电气标准    | TTL 兼容                                        |       |       |  |  |
| 方向控制    | 可独立配置为                                        | 输入或输出 |       |  |  |
| 默认上电状态  | 输入                                            |       |       |  |  |
|         | <b>产</b> 4. 双                                 | 最大电压  | 5V    |  |  |
| 松)畑杷山亚  | 高电平                                           | 最小电压  | 2V    |  |  |
| 输入逻辑电平  | 低电平                                           | 最大电压  | 0.8V  |  |  |
|         |                                               | 最小电压  | 0V    |  |  |
|         | 高电平                                           | 最大电压  | 5V    |  |  |
| 松山黑根山亚  |                                               | 最小电压  | 3.8V  |  |  |
| 输出逻辑电平  | 低电平                                           | 最大电压  | 0.44V |  |  |
|         |                                               | 最小电压  | 0V    |  |  |
| 最大输入范围  | 0∼5V                                          |       |       |  |  |
| 输入阻抗    | 10 ΚΩ                                         |       |       |  |  |
| 单通道驱动能力 | 24mA                                          |       |       |  |  |
| 过压保护    | 5V                                            |       |       |  |  |

# 2.3.5 计数器

| 通道数     |           |         |       |  |  |
|---------|-----------|---------|-------|--|--|
| 分辨率     | 32 bits   | 32 bits |       |  |  |
| 时钟输入频率  | 最大 2MHz   |         |       |  |  |
| 电气标准    | CMOS 兼容   |         |       |  |  |
|         | 高电平       | 最大      | 5V    |  |  |
| 输入输出    |           | 最小      | 3.8V  |  |  |
| 逻辑电平    | let do EE | 最大      | 0.44V |  |  |
|         | 低电平       | 最小      | 0V    |  |  |
| 输入阻抗    | 10ΚΩ      |         |       |  |  |
| 单通道驱动能力 | 24mA      |         |       |  |  |

# 2.3.6 以太网特性(出厂默认值)

| 网络类型     | 10/100 <b>M</b> 自适应         |
|----------|-----------------------------|
| 网络协议     | ТСР                         |
| 本地 IP 地址 | 192.168.1.4                 |
| 子网掩码     | 255.255.255.0               |
| 默认网关     | 192.168.1.1                 |
| HTTP 端口  | 四个端口分别为 8000、8100、8200、8300 |

# 2.3.7 板卡功耗

| 供电电压   | 典型值(mA)  | 最大值(mA)                |
|--------|----------|------------------------|
| 9V∼24V | 300(12V) | 550(12V)<br>所有 DO 满载输出 |

# 2.3.8 板卡特性

板载时钟振荡器: 40MHz



# ■ 3 设备特性

本章主要介绍 USB5630 相关的设备特性,主要包括板卡尺寸信息、板卡外形图、接口定义,为用户在使用 USB5630 过程中提供相关参考。

# 3.1 板卡外形图



图 3-1-1 USB5630 外形图

# 3.2 板卡尺寸图

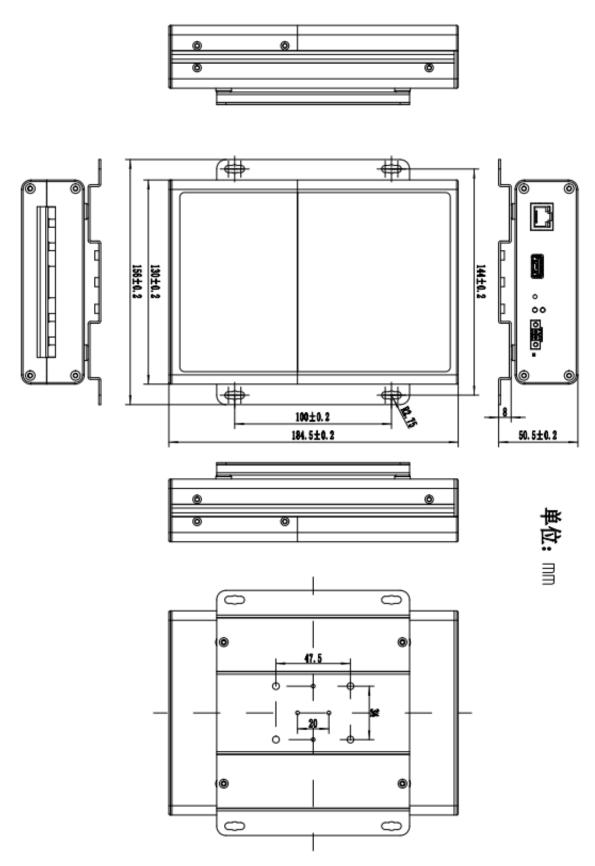



图 3-2-1 USB5630-D 外壳尺寸图

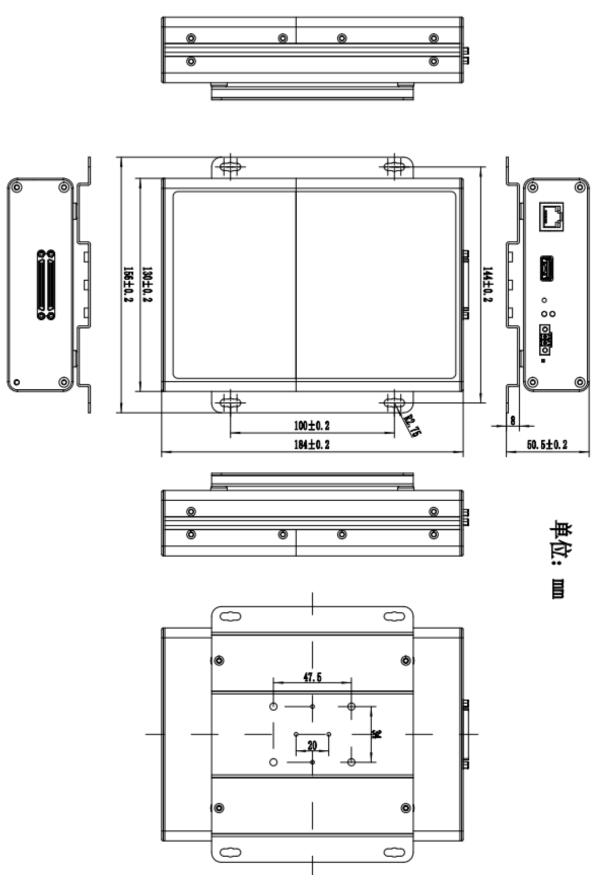



图 3-2-1 USB5630-V 外壳尺寸图

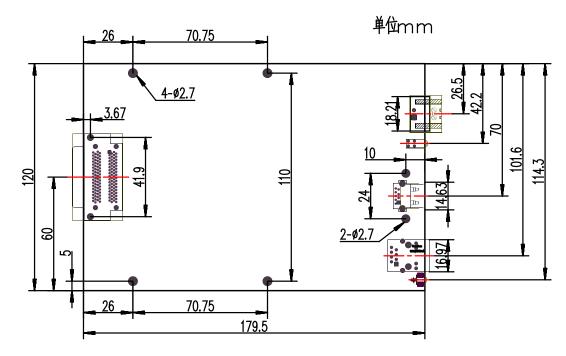



图 3-2-2 USB5630-V 内部尺寸图

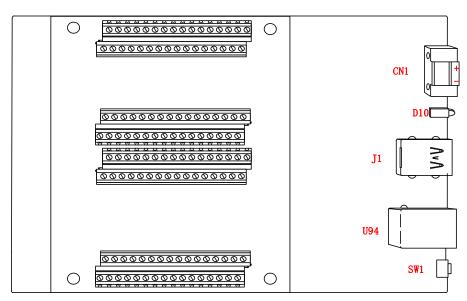



图 3-2-3 USB5630-D 内部示意图

CN1: 外部电源 (DC 9~24V)

D10: 工作状态指示灯

J1: USB 接口

SW1: 网口配置复位按钮

U94: RJ45 接口



# 3.3 接口定义

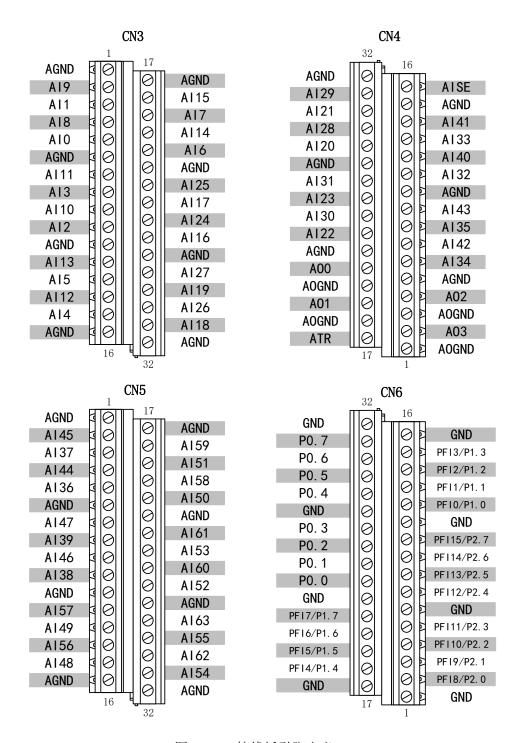



图 3-3-1 接线板引脚定义



|           | CNOB  |       |              | CNOA  |              |
|-----------|-------|-------|--------------|-------|--------------|
| (         |       |       |              |       | )            |
| A115      | 68 34 | AIO   | A142         | 1 35  | A148         |
| A17       | 67 33 | A18   | A134         | 2 36  | A156         |
| A114      | 66 32 | AI1   | A141         | 3 37  | A149         |
| A16       | 65 31 | A19   | A133         | 4 38  | A157         |
| AGND      | 64 30 | AGND  | AGND         | 5 39  | AGND         |
| A113      | 63 29 | A12   | A140         | 6 40  | A150         |
| A15       | 62 28 | A110  | A132         | 7 41  | A158         |
| A112      | 61 27 | AI3   | A143         | 8 42  | A151         |
| A14       | 60 26 | A111  | A135         | 9 43  | A159         |
| AGND      | 59 25 | AGND  | AGND         | 10 44 | AGND         |
| A131      | 58 24 | A116  | A147         | 11 45 | A152         |
| A123      | 57 23 | A124  | A139         | 12 46 | A160         |
| A130      | 56 22 | A117  | A146         | 13 47 | A153         |
| A122      | 55 21 | A125  | A138         | 14 48 | A161         |
| AGND      | 54 20 | AGND  | AGND         | 15 49 | AGND         |
| A129      | 53 19 | A118  | A145         | 16 50 | A154         |
| A121      | 52 18 | A126  | A137         | 17 51 | A162         |
| A128      | 51 17 | A119  | A144         | 18 52 | A155         |
| A120      | 50 16 | A127  | A136         | 19 53 | A163         |
| AGND      | 49 15 | ATR   | AGND         | 20 54 | AGND         |
| AISE      | 48 14 | AGND  | AGND         | 21 55 | AGND         |
| AOGND     | 47 13 | A00   | AOGND        | 22 56 | A02          |
| AOGND     | 46 12 | A01   | NC           | 23 57 | NC           |
| NC        | 45 11 | NC    | AOGND        | 24 58 | A03          |
| PF17/P1.7 | 44 10 | P0. 0 | NC           | 25 59 | NC           |
| PF16/P1.6 | 43 9  | P0. 1 | NC           | 26 60 | NC           |
| PF15/P1.5 | 42 8  | P0. 2 | NC           | 27 61 | NC           |
| PF14/P1.4 | 41 7  | P0. 3 | NC           | 28 62 | NC           |
| GND       | 40 6  | GND   | NC           | 29 63 | NC           |
| PF13/P1.3 | 39 5  | P0. 4 | GND          | 30 64 | GND          |
| PF12/P1.2 | 38 4  | P0. 5 | PF I15/P2. 7 | 31 65 | PF 18/P2. 0  |
| PF11/P1.1 | 37 3  | P0. 6 | PF I14/P2. 6 | 32 66 | PF 19/P2. 1  |
| PF10/P1.0 | 36 2  | P0. 7 | PF I13/P2. 5 | 33 67 | PF I10/P2. 2 |
| GND       | 35 1  | GND   | PF I12/P2. 4 | 34 68 | PF I11/P2. 3 |
| (         |       | J     |              |       | /            |

图 3-3-2 连接器引脚定义



表 3-3-1: 管脚功能概述

| 信号名称       | 管脚特性             | 管脚功能概述             |                     | 参考地   |  |
|------------|------------------|--------------------|---------------------|-------|--|
|            |                  | 单端模式               | AD模拟量输入端            |       |  |
|            |                  |                    | AI0~AI7:差分输入信号正端    |       |  |
|            |                  |                    | AI8~AI15: 差分输入信号负端  | _     |  |
|            |                  |                    | AI16~A23: 差分输入信号正端  |       |  |
| AI0~AI63   | Input            | <b>学八掛子</b>        | AI24~AI31: 差分输入信号负端 | AGND  |  |
|            |                  | 差分模式               | AI32~AI39: 差分输入信号正端 |       |  |
|            |                  |                    | AI40~AI47:差分输入信号负端  |       |  |
|            |                  |                    | AI48~AI55: 差分输入信号正端 |       |  |
|            |                  |                    | AI56~AI63:差分输入信号负端  |       |  |
| AISE       | Input            | NRSE模式,            | 所有模拟输入信号参考接线端       | AGND  |  |
| AO0~AO3    | Output           | DA模拟量输             | 治出端                 | AOGND |  |
| ATR        | Input            | 模拟外触发              | 信号输入                | AGND  |  |
| P0.0~P0.7  | Input/<br>Output | P0.0 P0.7 数字量输入/输出 |                     | GND   |  |
|            |                  | P1.0 P1.7 数字量输入/输出 |                     |       |  |
|            |                  | 外时钟输入/输出           |                     |       |  |
|            |                  | 数字触发信号输入           |                     |       |  |
|            |                  |                    | PFI0: 计数器0的CLK      |       |  |
| PFI0/P1.0  |                  |                    | PFI1: 计数器0的GATE     |       |  |
| ~          | Input/ Output    |                    | PFI2: 计数器0的UPDOWN   | GND   |  |
| PFI7/P1.7  | •                | 计数器                | PFI3: 计数器0的OUT      |       |  |
|            |                  | VI 9X 111          | PFI4: 计数器1的CLK      |       |  |
|            |                  |                    | PFI5: 计数器1的GATE     |       |  |
|            |                  |                    | PFI6: 计数器1的UPDOWN   |       |  |
|            |                  |                    | PFI7: 计数器1的OUT      |       |  |
| PFI8/P2.0  | Input/           | P2.0P2.7 数字量输入/输出  |                     |       |  |
| ~          | Output           | 外时钟输入/输出           |                     | GND   |  |
| PFI15/P2.7 |                  | 数字触发信号输入           |                     |       |  |
| GND        | GND              | 数字信号地              |                     |       |  |
| AGND       | GND              | 模拟信号地              |                     |       |  |
| AOGND      | GND              | 模拟输出信号地            |                     |       |  |



# 3.4 网络信息配置

正常工作状态下板卡将从非易失性存储器中读取网口配置信息配置网口。若上电状态下长按 SW1 按键,板卡将采用默认配置信息重新配置网口连接,具体值详见《<u>以太网特性(出厂默认值)</u>》。



用户在未知网口配置信息的情况下,可按下 SW1 按键后使用默认配置信息连接板卡,重新设置配置信息。

# ■ 4 AD 模拟量输入

本章主要介绍 USB5630 AD 模拟量输入的相关性质,主要包括 AD 模拟量输入功能框图、AD 校准、信号连接、AD 采集、AD 触发等,为用户在使用 USB5630 过程中提供相关参考。

## 4.1 AD 功能框图

USB5630 的模拟输入部分主要由 AD 模拟量输入端口、输入选择模块、程控放大器、低通滤波器、模数转换、AD 缓存、触发等组成。

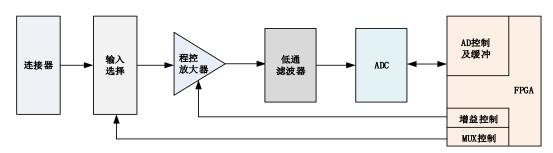



图 4-1-1 AD 功能框图

连接器: AD 模拟量输入端口,实现相关模拟输入信号的接入。

输入选择:通过模拟通道选择电路实现将需要采集的通道的模拟信号接入到信号调理电路中。

程控放大:模拟输入信号经程控放大模块进行放大或衰减,以确保模数转换的最高精度。

低通滤波:可有效降低高频噪声并减少频率混叠。

模数转换:将输入的模拟电压信号转换为数字信号,USB5630 使用 16 位 ADC 实现单通道最高 500KHz 的采样率。

AD 缓存: FIFO 数据缓存器,确保模拟输入信号在采集过程中没有数据丢失。

触发: USB5630 支持软件触发、ATR 模拟触发、DTR 数字触发。

# 4.2 AD 校准

USB5630 模拟量输入校准方式为 AD 软件自动校准。AD 软件自动校准能在不使用任何外部信号、参考电压或测量设备的情况下,自动测量并校准偏移误差和增益误差。

产品出厂时已经校准,校准常量被保存在固定的存储区域。

由于误差会随着时间和温度变化,建议用户在需要时重新校准。



在 AD 校准开始前,请至少将采集卡预热 15 分钟,且自动校准时,采集卡不要连接任何外部 信号,即直接将连接到板卡接口的信号线拔下即可。

# 4.3 AD 数据格式及码值换算

USB5630 的输入量程有 $\pm 10V$ 、 $\pm 5V$ 、 $\pm 2.5V$ 、 $0 \sim 10V$ 、 $0 \sim 5V$ ,以适应不同的模拟输入信号。



用户若将超出最大模拟输入电压范围的信号连接至板卡会造成数据采集失真甚至设备损坏,由此造成的损坏本公司不承担任何责任。

#### 4.3.1 AD 双极性模拟量输入的数据格式

表 4-3-1: AD 双极性模拟量输入的数据格式

| 输入电压值    | AD原始码(二进制)          | AD原始码(十六进制) | 求补后的码(十进制) |
|----------|---------------------|-------------|------------|
| 正满度      | 1111 1111 1111 1111 | FFFF        | 65535      |
| 正满度-1LSB | 1111 1111 1111 1110 | FFFE        | 65534      |
| 中间值+1LSB | 1000 0000 0000 0001 | 8001        | 32769      |
| 中间值 (零点) | 1000 0000 0000 0000 | 8000        | 32768      |
| 中间值一1LSB | 0111 1111 1111 1111 | 7FFF        | 32767      |
| 负满度+1LSB | 0000 0000 0000 0001 | 0001        | 1          |
| 负满度      | 0000 0000 0000 0000 | 0000        | 0          |

注: 当输入量程为 $\pm 10$ V、 $\pm 5$ V、 $\pm 2.5$ V 时,即为双极性输入,下面以标准 C(即 ANSI C)语法公式说明如何将原码数据换算成电压值(单位 **V**):

±10V 量程:Volt=(20.00/65536)\*(ADBuffer[0]&0xFFFF) - 10.00

±5V 量程:Volt =(10.00/65536)\*(ADBuffer[0]&0xFFFF) - 5.00

±2.5V 量程:Volt =(5.00/65536)\*(ADBuffer[0]&0xFFFF) - 2.50

#### 4.3.2 AD 单极性模拟量输入的数据格式

表 4-3-2: AD 单极性模拟量输入的数据格式

| 输入电压值    | AD原始码(二进制)          | AD原始码(十六进制) | 求补后的码(十进制) |
|----------|---------------------|-------------|------------|
| 正满度      | 1111 1111 1111 1111 | FFFF        | 65535      |
| 正满度-1LSB | 1111 1111 1111 1110 | FFFE        | 65534      |
| 中间值+1LSB | 1000 0000 0000 0001 | 8001        | 32769      |
| 中间值      | 1000 0000 0000 0000 | 8000        | 32768      |
| 中间值-1LSB | 0111 1111 1111 1111 | 7FFF        | 32767      |
| 零点+1LSB  | 0000 0000 0000 0001 | 0001        | 1          |
| 零点       | 0000 0000 0000 0000 | 0000        | 0          |

注: 当输入量程为  $0\sim10V$ 、 $0\sim5V$  时,即为单极性输入,下面以标准 C(即 ANSI C)语法公式说明如何将原码数据换算成电压值(单位 V):

0~10V 量程:Volt=(10.00/65536)\*(ADBuffer[0]&0xFFFF)

0~5V 量程:Volt =(5.00/65536)\*(ADBuffer[0]&0xFFFF)



- ① 当用户选择程控增益时,电压值会增大相应的倍数。
- ② 在被采信号为一个小信号时,使用程控增益可以获得更高的分辨率。

## 4.4 AD 信号连接

信号源分为: 浮接信号源、接地信号源

信号的接线方式分为:差分(DIFF)、无参考地单端(NRSE)、参考地单端(RSE)。

表 4-4-1: 模拟量输入信号连接概述

| 火 寸 寸 1 ,              | 农 4-4-1: 模拟里湘八信专连按僦还                                                           |                                                                                             |  |  |  |
|------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
| 模拟信号 接地连接方式            | 浮接信号源                                                                          | 接地信号源                                                                                       |  |  |  |
|                        | 含义: 浮接信号源是指没有与建筑物的接地系统连接,但是有一个隔离参考点的信号源。  ◆ 变压器、热电偶;  ◆ 电池设备;  ◆ 拥有隔离输出的仪器或者设备 | <ul><li>含义:接地信号源是指与地系统连接的信号源,即它本身内部地和建筑物的接地系统是连接的。</li><li>◆ 接入建筑供电系统的仪器和设备的非隔离输出</li></ul> |  |  |  |
| 差分模式<br>(DIFF)         | 信号源 数据采集设备<br>+ AI+<br>+ AI- AI GND                                            | 信号源 AI+ + AI- AI GND III                                                                    |  |  |  |
| 无参考地<br>单端模式<br>(NRSE) | 信号源 数据采集设备 AI + + AI SENSE AI GND =                                            | 信号源 数据采集设备  AI + AI SENSE AI GND =                                                          |  |  |  |
| 参考地<br>单端模式<br>(RSE)   | 数据采集设备<br>信号源 AI +<br>                                                         | 不推荐使用<br>数据采集设备<br>信号源 AI +<br>+<br>- VB AI GND                                             |  |  |  |

# 4.4.1 浮接信号源

浮接信号源是指没有与建筑物的接地系统连接,但是有一个隔离参考点的信号源。拥有隔离输出的仪器或者设备就是一个浮接信号源。常见的浮接信号源有变压器、热电偶、电池供电设备、隔离放大器的输出、光耦隔离器等。



用户在测量浮接信号源时,请务必将信号源的负端连接至 AI GND (直接或经过偏置电阻连接),否则,信号源可能会浮动到采集卡的最大工作电压范围之外,甚至损坏测试设备。

#### 4.4.1.1 差分模式(DIFF)

#### (1) 适用场合

当输入通道满足以下任何条件时,推荐使用差分模式连接:

- 输入信号电平较低(<1V)
- 连接信号与设备间的导线长度>3m
- 输入信号需要一个隔离(单独)的地参考点或返回信号
- 信号导线通过的环境较嘈杂
- 模拟输入通道(AI+、AI-)都是有效信号

差分连接方式可有效降低噪声干扰和增强共模噪声抑制。

#### (2) 连接方式

#### 直接连接

对于内阻小于  $100\Omega$  的直流耦合浮接信号源,推荐使用直接连接方式。即将信号源的正端直接连接至 AI+,将信号源的负端直接连接至 AI-和 AI\_GND,如图 4-4-1 所示。

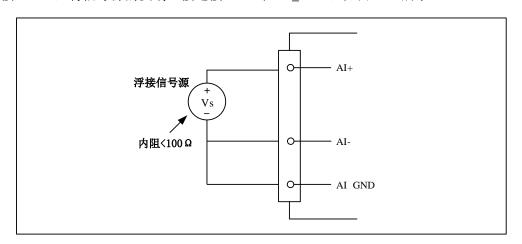



图 4-4-1 浮接信号源差分 (DIFF)连接 -- 直接连接



#### 单个偏置电阻连接

对于内阻较大的浮接信号源,推荐使用单个电阻连接方式。即将信号源的正端直接连接至 AI+,将信号源的负端直接连接至 AI-,且需将信号源的负端通过偏置电阻 R 连接至 AI\_GND,其中电阻 R 为信号源内阻的 100 倍,如图 4-4-2 所示。

当浮接信号源的内阻较大时,会使大部分静电噪声耦合到正极(由于负极和地连接),造成信号的严重失衡。在这种情况下,使用单个电阻连接方式,偏置电阻会使信号路径接近平衡,两端耦合等量的噪声,这样可更好地抑制静电耦合噪声。

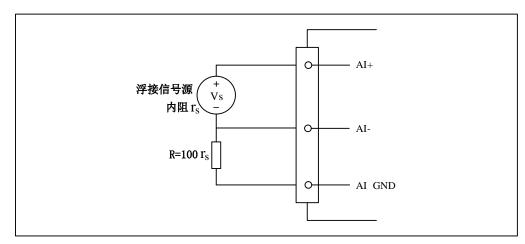



图 4-4-2 浮接信号源差分 (DIFF)连接 -- 单个偏置电阻连接

#### 平衡偏置电阻连接

对于内阻较大的浮接信号源,也可以通过平衡偏置电阻的连接方式平衡信号路径。即在信号源正端与 AI GND 间增加同样阻值大小的偏置电阻 R,如图 4-4-3 所示。

在这种情况下,使用平衡偏置电阻连接相比单个偏置电阻连接可提供略好的噪声抑制,但会降低信号源的带载能力并引入增益误差。例如,源阻抗是 2K 欧姆,这两个电阻分别是 100K 欧姆,因此负载电阻为 200K 欧姆并产生-1%的增益差。

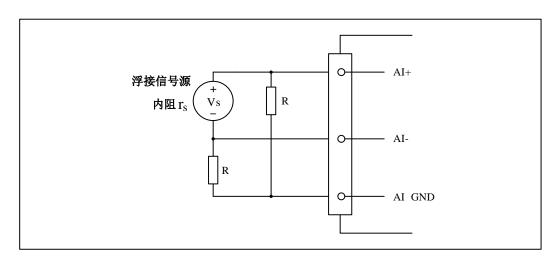



图 4-4-3 浮接信号源差分 (DIFF)连接 -- 平衡偏置电阻连接

#### 交流耦合信号源连接

对于交流耦合(电容耦合)的浮接信号源,若信号源内阻较小,可以选择一个阻值范围在  $100k\Omega\sim1M\Omega$  的偏置电阻,并将电阻两端分别连接至信号源正端及  $AI\_GND$ ,同时将信号源负端连接至  $AI\_GND$ 。选择阻值范围在  $100k\Omega\sim1M\Omega$  的偏置电阻,即不会影响到带载能力,也不能 因为输入偏置电流而产生明显的输入偏置电压。如果信号源的输出阻抗较大,可以选用上述平衡偏置电阻连接的方式,如图 4-4-4 所示,此种连接方式同样会降低信号源的带载能力并引入增益误差。

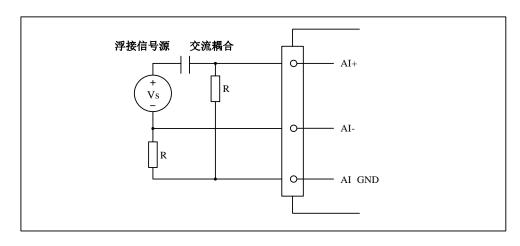



图 4-4-4 浮接信号源差分 (DIFF)连接 -- 交流耦合信号源平衡偏置电阻连接

#### 4.4.1.2 无参考地单端模式(NRSE)

#### (1) 适用场合

当输入通道满足以下任何条件时,推荐使用无参考地单端模式连接:

- 输入信号电平较高(>1V)
- 连接信号与设备间的导线长度<3m
- 輸入信号与其它信号共用一个参考点

该连接方式相比差分模式会在待测信号中引入更多电磁噪声。

#### (2) 连接方式

浮接信号源无参考地单端模式连接方式与浮接信号源差分模式相似,只需用 AI\_SENSE 替代原图中的 AI-即可,其中关于偏置电阻 R 的取值与浮接信号源差分模式相同。

#### 4.4.1.3 参考地单端模式(RSE)

#### (1) 适用场合

当输入通道满足以下任何条件时,推荐使用参考地单端模式连接:

- 输入信号能够共享一个公共参考点,AI GND, 其他信号用 RSE
- 输入信号电平较高(>1V)
- 连接信号与设备间的导线长度<3m

对于任何输入信号不符合上述条件的, 差分输入连接具有更高的信号完整性。

#### \*ART Technology

#### (2) 连接方式

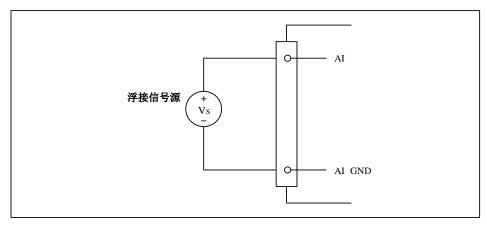



图 4-4-5 浮接信号源的参考地单端(RSE)连接

#### 4.4.2 接地信号源

接地信号源是指与地系统连接的信号源,即它本身内部地和建筑物的接地系统是连接的。

假定测量设备与信号源接入到同一个供电系统的条件下,信号源已经连接到与设备相关的公共 接地点。则接入建筑供电系统的仪器和设备的非隔离输出都属于接地信号源。

连接到同一个建筑供电系统的两个仪器,地之间的电势差通常在1到100mV之间。如果配电线路连接不合理,这个差值会更大,在数据采集系统中此差值就表现为测量误差。遵循接地信号源的连接说明可消除被测信号的地电势差。



用户在测量接地信号源时,不推荐使用参考地单端模式连接相关待测信号,可以选用差分或无参考地单端的连接模式。



模拟输入信号需控制在正常量程范围内,否则会对设备造成损坏。由此造成的损坏本公司不承担任何责任。

#### 4.4.2.1 差分模式(DIFF)

#### (1) 适用场合

当通道满足以下任何条件时,推荐使用差分模式(DIFF)连接:

- 输入信号电平较低(<1V)
- 连接信号与设备间的导线长度>3m
- 信号导线通过的环境较嘈杂
- 有两路有效的模拟输入通道(AI+、AI-)

该连接方式可有效降低噪声干扰并增强共模噪声抑制。

#### (2) 连接方式

连接方式如下图 4-4-6 所示,图中 Vcm 为共模噪声和信号源地与设备地间的接地环路电势差,差分连接方式可有效抑制存在的共模噪声及接地电势差。

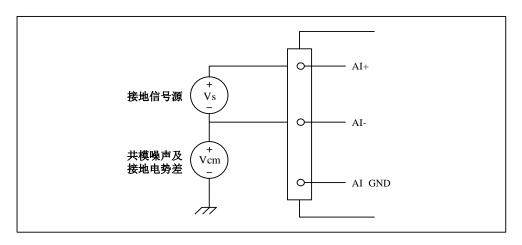



图 4-4-6 接地信号源的差分(DIFF)连接

#### 4.4.2.2 无参考地单端模式(NRSE)

#### (1) 适用场合

当通道满足以下任何条件时,推荐使用无参考地单端模式连接:

- 输入信号电平较高(>1V)
- 连接信号与设备间的导线长度<3m
- 输入信号与其它信号共用一个参考点

无参考地单端模式相比差分模式会在待测信号中引入更多电磁噪声。

#### (2) 连接方式

对于接地信号源单端信号的测量,必须采用无参考地单端模式(NRSE)连接,以避免接地环路电势差叠加至待测信号,引入测量误差。如图 4-4-7 所示,图中 Vcm 为共模噪声及信号源地与设备地间的接地环路电势差。

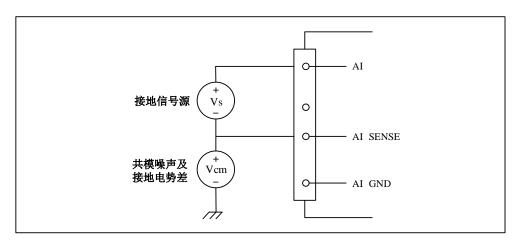



图 4-4-7 接地信号源的无参考地单端(NRSE)连接

### 4.5 AD 数据采集注意事项

USB5630 可以高速扫描模拟输入通道,实现高精度采集。但使用过程中会有一些因素增加系统的建立时间,降低系统测量的准确性。建立时间是指输入信号经 ADC 采样之前,程控放大器将输入信号放大至合适的量程范围内所需要的时间。

用户需注意以下几点,以确保高精度采集的实现。

#### 4.5.1 使用低阻抗信号源

使用低阻抗信号源,可以缩短程控放大器建立时间,提高系统精确度,建议用户使用阻抗小于 1KΩ 的信号源。如果用户的信号源为高阻抗信号源,可通过降低采样率或使用一个外部电压跟随来 缩短系统的建立时间,使精确度得以提高。

#### 4.5.2 使用高质量电缆

使用高质量电缆可以最大限度地提高精确度,减小串扰、传输线效应和噪声等几个方面的影响。 建议用户使用具有良好屏蔽效果的电缆。

#### 4.5.3 降低相邻通道间的电压差

一般情况下,当程控放大器从一个小的输入范围切换到较大的输入范围,并不需要多余的建立时间。但当程控放大器从一个大的输入范围切换到较小的输入范围,建立时间被延长,精确度降低。 为此用户应避免这种效果,精心选择接入的信号使相邻通道间的电压范围变小。

#### 4.5.4 在相邻信号通道间插入地信号

在相邻通道间插入地信号,也可缩短建立时间。因为输入信号接地,程控放大器会更快的调整 新的输入范围。

#### 4.5.5 选择合适的采样速率

在低速采集系统中,程控放大器可通过降低噪声来增加精度。在高速采集系统中,更多采样点 平均分配,采样结果会更加精确。用户需根据实际需求选择合适的采样速率。

# 4.6 AD 单通道与多通道数据采集排列方式

#### 4.6.1 单通道数据采集排列方式

当采样通道总数等于1时,则为单通道采集。

#### 4.6.2 多通道数据采集排列方式

当采样通道总数大于1时,则为多通道采集。多通道采集时各通道数据(设定的采集通道)采用顺序排列的方式依次进行排放,数据传输时将采集的数据打包上传。

如果用户使能所有通道,因每个16Bit采样数据点均由1个字(即两个字节)构成,则数据排列方式:

0通道第一个采样点、1通道第一个采样点.....15通道第一个采样点

0通道第二个采样点、1通道第二个采样点.....15通道第二个采样点

.....依次类推。

如果用户使能0、4、7通道,则数据排列方式:

0通道第一个采样点、4通道第一个采样点、7通道第一个采样点

0通道第二个采样点、4通道第二个采样点、7通道第二个采样点

.....依次类推。

## 4.7 AD 内时钟和外时钟功能

#### 4.7.1 内时钟功能

AD 内时钟功能是根据用户指定的分频数将板载时钟振荡器经板载逻辑控制电路分频后产生的时钟信号去定时触发 AD 进行转换。

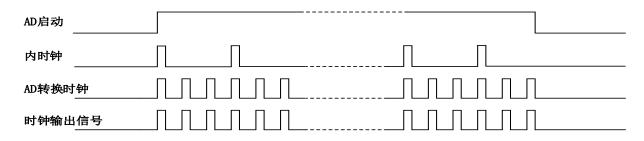



图 4-7-1 内时钟时序图

#### 4.7.2 外时钟功能

AD 外时钟功能是指使用板外时钟信号来定时触发 AD 进行转换。

该时钟信号通过板外时钟输入管脚接入。板外时钟信号可以是另外一块板卡的时钟输出,也可以是其他设备如时钟频率发生器等。

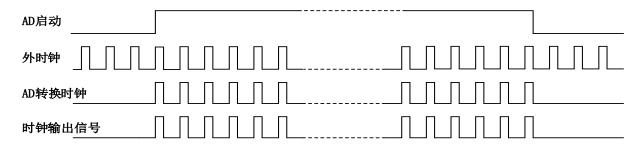



图 4-7-2 外时钟时序图

#### 4.7.3 时钟输入输出的连接

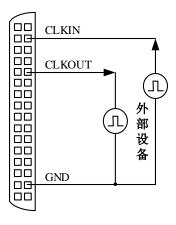



图 4-7-3 时钟输入输出的连接



# 4.8 AD 采样

本板卡 AD 采样支持按需单点采样、有限点采样、连续采样。

#### 4.8.1 按需单点采样

按需单点采样可简单、方便的实现各通道单个点的采样,如图 4-8-1 所示。

按需单点采样功能是指用户根据需求,随时可以获取各通道一个采样点的功能。该功能主要针对简单采样或采样实时性要求较高、数据量很少且采样时间不确定的应用中。采集实时性较高可方便的用于 PID、PLC 等实时快速的伺服闭环控制系统等场合。用户在每发出单点的读命令后,设备快速的完成一次采集,各通道采集一个点,之后将采集的 AD 数据迅速的传给 PC 机。

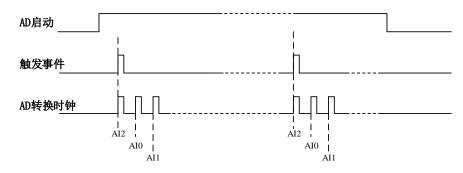



图4-8-1 按需单点采集

在按需单点采样模式下,AD 启动并被触发后,以AD 内时钟频率作为采样时钟,按照预设的通道 AI2、AI0、AI1 顺序扫描采集,每通道各采集一个点,数据采集完成后将其传输到 PC 机完成一次单点采样。



- ① 在按需单点采样下,AD 转换频率受控于AD 最大采样频率及用户的单点读命令等。
- ② 在按需单点采样下, 时钟输出 CLKOUT 无效。

#### 4.8.2 有限点采样

有限点采样功能是指 AD 在采样过程中每相邻两个采样点的时间相等,采集过程中不停顿,实现各通道采样预设的点数,如图 4-8-2 和图 4-8-3 所示。

有限点采样可应用在已知采样总点数或采样总时间的采样任务中,尤其是用于带有触发的采样任务中。例如:需要在触发信号开始之后采集 2 秒钟长度的数据,使用有限点采样方式可方便的实现此需求。使用有限点采样时,需指定各通道的采样长度,或将需要采集的时间根据采样速率转换为各通道的采样长度。

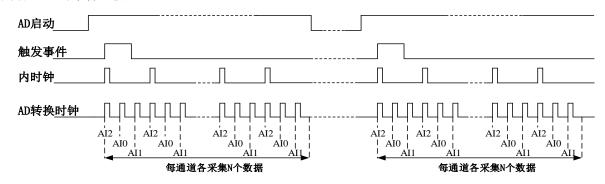



图 4-8-2 内时钟有限点采样




图4-8-3 外时钟有限点采样

在有限点采样模式下,AD 启动并被触发后,以预设的内时钟(图 4-8-2)或外时钟(图 4-8-3)作为 AD 采样时钟,按照预设的通道 AI2、AI0、AI1 顺序扫描采集,采集完成后,继续扫描采集 AI2、AI0、AI1,以此循环直到各通道采集完预设点数时自动停止采集。若再次启动 AD 采集,重复上述动作直至自动停止采集。



- ① 在内时钟有限点采样模式下, AD 转换频率为设置的内时钟频率。
- ② 在外时钟有限点采样模式下, AD 转换频率为外时钟频率, 其频率不能大于 AD 的最大 采样频率。

#### 4.8.3 连续采样

连续采样功能是指 AD 在采样过程中每相邻两个采样点的时间相等,采集过程中不停顿,连续不间断的采集数据,直到采样任务停止。如图 4-8-4 和图 4-8-5 所示。

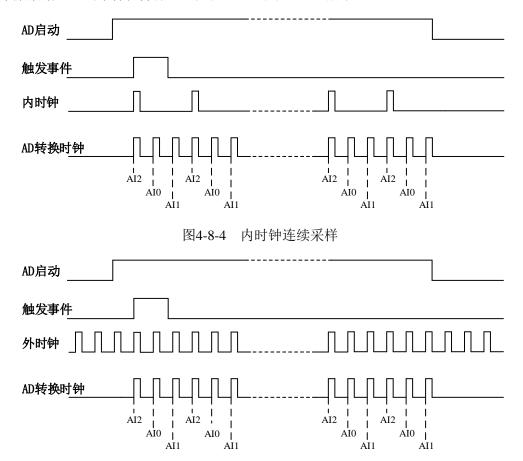



图4-8-5 外时钟连续采样

在连续采样模式下,AD 启动并被触发后,以预设的内时钟(图 4-8-4)或外时钟(图 4-8-5)作为AD 采样时钟,按照预设的通道 AI2、AI0、AI1 顺序扫描采集,采集完成后,继续扫描采集 AI2、

# ART Technology

AIO、AI1,以此循环直到用户停止 AD 采集。



- ① 在内时钟连续采样模式下, AD 转换频率为设置的内时钟频率。
- ② 在外时钟连续采样模式下, AD 转换频率为外时钟频率, 其频率不能大于 AD 的最大采样频率。

### 4.9 AD 触发功能

#### 4.9.1 触发信号的连接

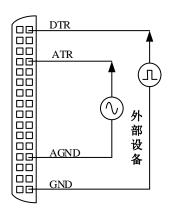



图 4-9-1 触发信号连接

#### 4.9.2 AD 触发功能框图

USB5630 支持软件触发、模拟触发、数字触发。各种触发源通过软件选择。

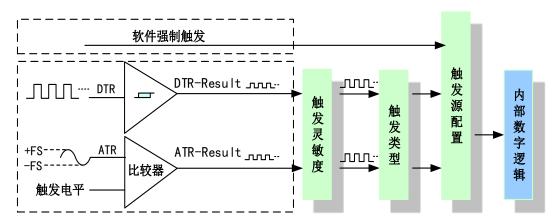



图 4-9-2 AD 触发功能框图



当用户使能通道模拟ATR触发、外部数字DTR触发、软件强制触发时,各触发信号满足触发条件即可生效,各触发为或的关系。

理想中的ATR和DTR信号是没有抖动的。但实际中的ATR和DTR信号会有很大的抖动,设置触发灵敏度可以很好的抑制抖动。如下图4-9-3所示:



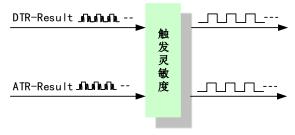
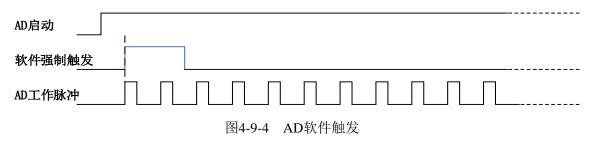




图 4-9-3 触发灵敏度

#### 4.9.3 软件触发功能

在软件触发采集模式下,点击"开始采集"按钮,AD 并不立刻采集数据,而是要等待软件触发信号到来后才开始采集数据,如图 4-9-4 所示。



#### 4.9.4 模拟触发功能

模拟触发是将一定范围内变化的模拟信号作为触发源。该触发源信号通过模拟外触发输入管脚ATR接入,与预设触发电平信号进入比较器进行高速比较。比较器输出高低电平来触发 AD 采集,如图 4-9-5 所示。

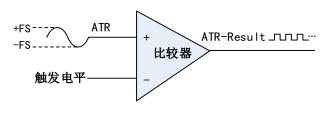



图4-9-5 比较器

#### 4.9.4.1 边沿触发功能

模拟触发的边沿触发是根据触发源信号相对于触发电平的变化特征来触发 AD 采集的。即利用模拟比较器输出结果的边沿信号作为触发条件。

模拟触发方向可分为:下降沿触发、上升沿触发、变化触发。

以下降沿触发为例来说明,具体过程如图 4-9-6 所示。上升沿触发、变化触发不再陈述。

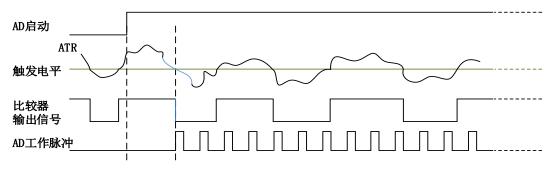



图 4-9-6 模拟触发--下降沿触发

#### \*ART Technology

当触发方向选择下降沿触发时,点击"开始采集"按钮,AD 并不立刻采集数据,当模拟触发源信号从大于触发电平变化至小于触发电平时,AD 立刻开始采集数据,直到用户点击"停止采集"按钮时停止。

#### 4.9.5 数字触发功能

#### 4.9.5.1 边沿触发功能

数字触发的边沿触发是根据触发源信号的变化特征来触发 AD 采集的,即利用触发源信号的边沿信号作为触发条件。该触发源信号通过数字外触发输入管脚 DTR 接入。

数字触发方向可分为:下降沿触发、上升沿触发、变化触发。

以下降沿触发为例来说明,具体过程如图 4-9-7 所示。上升沿触发、变化触发不再陈述。

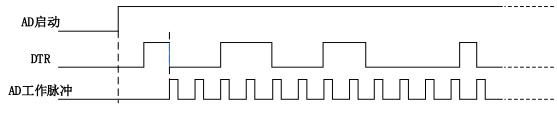



图 4-9-7 数字触发--下降沿触发

当触发方向选择下降沿触发时,点击"开始采集"按钮,AD 并不立刻采集数据,当数字触发源信号从高电平变为低电平时,即数字触发源信号出现下降沿时,AD 立刻开始采集数据,直到用户点击"停止采集"按钮时停止。

## 4.10 多卡同步的实现方法

USB5630多卡同步可以有三种方案,第一:采用主从卡级联,第二:采用共同的外触发,第三:采用共同的外时钟。

采用主从卡级联时,置主卡为内时钟源模式,选择允许时钟输出,从卡为外时钟源模式,连接 好被采信号,按图 4-10-1 连接主从卡。先启动所有从卡,由于主卡没有被启动,此时主卡没有输出 时钟信号,所以从卡进入等待状态,直到主卡被启动时所有板卡才开始同时动作。这种连接方式实 现了多卡同步启动的功能。

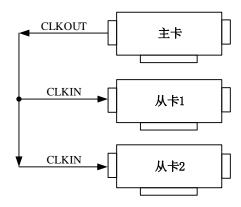



图 4-10-1 主从卡级联

采用共同的外触发时,置触发模式为硬件外触发模式,触发源为 DTR 或 ATR,且所有板卡的所有配置参数应保持一致。连接好被采信号,若触发源为 DTR,则所有板卡从 DTR 管脚接入同一个触发信号;若触发源为 ATR,则所有板卡从 ATR 管脚接入同一个触发信号,并设置触发电平。启动所有板卡,此时采集卡并不采集,进入等待状态,直到触发信号满足条件时所有板卡才开始同时动作。这种连接方式实现了多卡同步启动的功能。



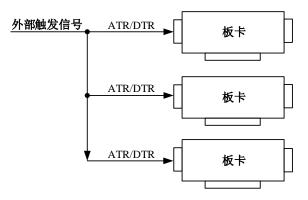



图 4-10-2 共同的外触发

采用共同的外时钟时,置时钟源为外部时钟源,且所有板卡的所有配置参数应保持一致。连接 好被采信号,启动所有板卡,此时采集卡并不采集,进入等待状态,直到外部时钟信号接入时所有 板卡才开始同时动作。这种连接方式实现了多卡同步启动的功能。

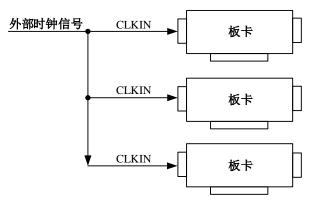



图 4-10-3 共同的外时钟

# ■ 5 DA 模拟量输出

本章主要介绍 USB5630 DA 模拟量输出的相关性质,主要包括 DA 模拟量输出功能框图、DA 信号连接、DA 校准、DA 触发等,为用户在使用 USB5630 过程中提供相关参考。

### 5.1 DA 功能框图

USB5630 的模拟输出部分主要由放大器、数模转换模块、AO 控制逻辑等组成。

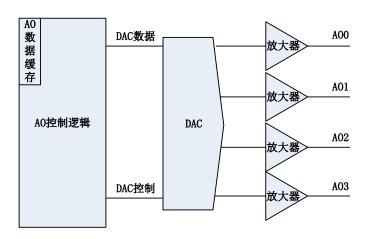



图 5-1-1 DA 功能框图

# 5.2 DA 信号连接

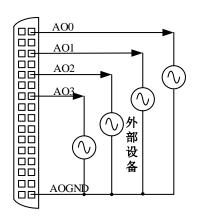



图5-2-1 DA模拟量输出连接

# 5.3 DA 校准

DA 校准为软件自动校准。



先进行 AD 校准后,再进行 DA 校准,否则校准结果并不准确。

# 5.4 DA 数据格式及码值换算

USB5630 DA 模拟量输出量程有 0~5V、0~10V 、±5V、±10V、±2.5V、-2.5~7.5 V。

### 5.4.1 DA 双极性模拟量输出的数据格式

表 5-4-1: DA 双极性模拟量输出的数据格式

| 输入       | DA原始码(二进制)          | DA原始码(十六进制) | DA原始码(十进制) |
|----------|---------------------|-------------|------------|
| 正满度      | 1111 1111 1111 1111 | FFFF        | 65535      |
| 正满度-1LSB | 1111 1111 1111 1110 | FFFE        | 65534      |
| 中间值+1LSB | 1000 0000 0000 0001 | 8001        | 32769      |
| 中间值 (零点) | 1000 0000 0000 0000 | 8000        | 32768      |
| 中间值-1LSB | 0111 1111 1111 1111 | 7FFF        | 32767      |
| 负满度+1LSB | 0000 0000 0000 0001 | 0001        | 1          |
| 负满度      | 0000 0000 0000 0000 | 0000        | 0          |

注明: 当输出量程为±5V、±10V、±2.5V、-2.5~7.5V 时,即为双极性输出。假定输出的电压值为 Volt(单位为 mV),写向设备的 DA 原始码为 nDAData,则换算关系如下:

- ±5V 量程时: nDAData = Volt/(10000.00/65536) + 32768;
- ±10V 量程时: nDAData = Volt/20000.00/65536) + 32768;
- ±2.5V 量程时: nDAData = Volt/5000.00/65536) + 32768;
- -2.5~7.5V 量程时: nDAData = Volt/10000.00/65536) + 16384;

将换算得到的 nDAData 作为 WriteDeviceProDA()函数的第二个参数传递下去,即可实现相应电压值的输出。

### 5.4.2 DA 单极性模拟量输出的数据格式

表 5-4-2: DA 单极性模拟量输出的数据格式

| 输入       | DA原始码(二进制)          | DA原始码(十六进制) | DA原始码(十进制) |
|----------|---------------------|-------------|------------|
| 正满度      | 1111 1111 1111 1111 | FFFF        | 65535      |
| 正满度-1LSB | 1111 1111 1111 1110 | FFFE        | 65534      |
| 中间值+1LSB | 1000 0000 0000 0001 | 8001        | 32769      |
| 中间值      | 1000 0000 0000 0000 | 8000        | 32768      |
| 中间值一1LSB | 0111 1111 1111 1111 | 7FFF        | 32767      |
| 零点+1LSB  | 0000 0000 0000 0001 | 0001        | 1          |
| 零点       | 0000 0000 0000 0000 | 0000        | 0          |

注明: 当输出量程为  $0\sim5V$ 、  $0\sim10V$  时,即为单极性输出。假定输出的电压值为 Volt(单位为 mV),写向设备的 DA 原始码为 nDAData,则换算关系如下:

- 0~5V 量程时: nDAData = Volt/(5000.00/65536);
- 0~10V 量程时: nDAData = Volt/(10000.00/65536);



# 5.5 DA 内时钟与外时钟功能

详见《AD内时钟和外时钟功能》章节中的内时钟和外时钟功能。



当使用外时钟进行 DA 转换时,各通道实际转换速率 = 外时钟频率。如:使能两个通道,各以 100KSPS 采样率输出时,外时钟频率为 100KHz。

# 5.6 DA 采样

本板卡 DA 采样支持按需单点采样、有限点采样、连续采样,详见《<u>AD 采样</u>》章节。 在连续采样模式下,用户可选择波形,并可通过设置波形频率、幅度、偏移、相位、占空比以 输出满足要求的信号。



在单点采样模式下,触发事件无效, DA 启动即可输出恒定电压值。

### 5.7 DA 触发功能

详见《AD触发功能》章节。

# ■ 6 数字量输入输出

本章主要介绍 USB5630 数字量输入输出的相关性质,主要包括数字量输入输出功能框图、信号连接等,为用户在使用 USB5630 过程中提供相关参考。

### 6.1 数字量输入输出功能框图

USB5630 提供 24 路开关量输入输出(P0.0~P2.7),每路可单独配置为输入输出。DI 输入兼容 5V CMOS 电平,DO 输出 5V CMOS,单通道电流驱动能力 $\pm$ 24mA。图 7-8-1 为 USB5630 开关量输入输出功能框图。

USB5630 数字量输入输出部分主要由输入输出电路保护、电平转换电路、FPGA 控制逻辑组成。

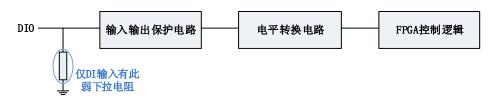



图6-1-1 数字量输入输出功能框图

### 6.2 DI 数字量输入的连接方式

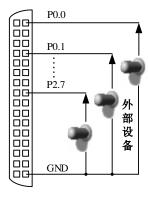



图6-2-1 DI数字量输入的连接



用户若将超出最大数字输入电压范围的信号连接至板卡会造成数据采集失真甚至设备损坏,由此造成的损坏本公司不承担任何责任。

# 6.3 DO 数字量输出的连接方式

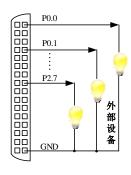



图6-3-1 DO数字量输出的连接

# ■ 7 计数器

本章主要介绍 USB5630 计数器的相关性质,主要包括计数器信号连接、工作方式等,为用户 在使用 USB5630 过程中提供相关参考。

此板卡包含2个32位的计数器,每个计数器都可独立设置为加计数或者减计数功能。

在计数器功能模式下,不同的工作方式下具有相同的规律:

当 UP\_DOWN=0 时, 计数器作减法计数, 均作减"1"操作, 直到计数值变为 0;

当 UP\_DOWN=1 时,计数器作加法计数,即作加"1"操作,直到计数器的值变为 4294967295 (即  $2^{32}$  -1 )。

### 7.1 计数器信号连接

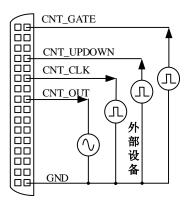



图7-1-1 计数器信号连接

# 7.2 各工作方式下门控信号作用

USB5630支持2路独立的减法/加法计数器,6种计数方式。

表 7-2-1: 六种工作方式下门控信号作用

| 门控信号<br>GATE<br>工作方式 | 低电平或下降沿   | 上升沿                               | 高电平  |
|----------------------|-----------|-----------------------------------|------|
| 方式 0                 | 禁止计数      | 无作用                               | 允许计数 |
| 方式1                  | 无作用       | a、装入初值后,启动计数<br>b、计数过程中,重新从初值开始计数 | 无作用  |
| 方式 2                 | 禁止计数并输出为高 | 启动计数                              | 允许计数 |
| 方式3                  | 禁止计数并输出为高 | 启动计数                              | 允许计数 |
| 方式4                  | 禁止计数      | 无作用                               | 允许计数 |
| 方式 5                 | 无作用       | a、装入初值后,启动计数<br>b、计数过程中,重新从初值开始计数 | 无作用  |

# 7.3 减法计数工作方式

### 7.3.1 方式 0: 计数结束产生中断

装入计数初值n之后,在GATE为高时从初值n开始进行减1计数,此时OUT输出为低电平;当计数结束即计数到0时,输出变成高电平。计数完成再次门控时,计数器不计数。

当减量计数未计完时,再次门控时,继续当前计数。

当GATE为低电平或下降沿时禁止计数; 当GATE为高时,允许计数。

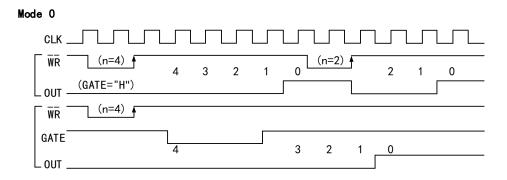



图7-3-1 计数方式0时序图

### 7.3.2 方式 1: 可编程单次脉冲

装入计数初值n之后,GATE由低变高时从初值开始进行减1计数,此时OUT输出为低电平;当计数结束即计数到0时,输出变成高电平,即输出单次脉冲的宽度等于n。计数完成再次门控时,计数器从初值重新开始进行减1计数。

当减量计数未计完时,再次门控时,停止当前计数,重新从初值开始进行减1计数,这时输出的 单次脉冲被加宽。

当GATE为低电平或下降沿时不起作用;当GATE为高时,不起作用,只有当GATE为上升沿时才计数。

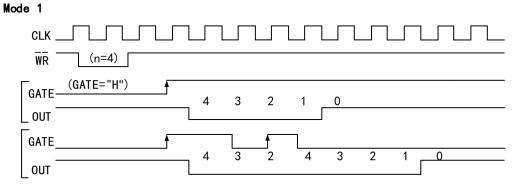



图7-3-2 计数方式1时序图

### 7.3.3 方式 2: 频率发生器

装入计数初值n之后,在GATE信号上升沿启动计数,GATE为高时从初值开始进行减1计数,此时OUT输出为高电平;当计数结束即计数到1时,输出一个时钟周期负脉冲。计数完成自动从初值开始进行减1计数。两负脉冲间的时钟个数等于n-1。

当减量计数未计完时,再次门控时,停止当前计数,重新从初值开始进行减1计数。

当GATE为低电平或下降沿时禁止计数且OUT输出被拉高; 当GATE为高时,允许计数。

在该方式下,门控信号相当于复位信号。当GATE=0时,立即强迫输出为高电平,当GATE=1时,便启动一次新的计数周期,这样可以用一个外部控制逻辑来控制GATE,从而达到同步计数的作用。当然计数器也可以用软件控制GATE而达到同步控制目的。

#### Mode 2

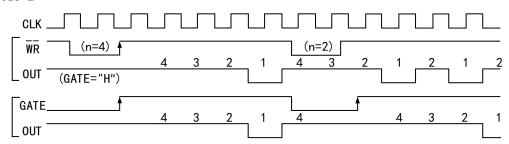



图7-3-3 计数方式2时序图

### 7.3.4 方式 3: 方波发生器

装入计数初值n之后,在GATE信号上升沿启动计数,GATE为高时从初值开始进行减1计数,在完成前一半计数时,输出一直保持高电平,而在进行后一半计数时,输出变成低电平。计数完成自动从初值开始进行减1计数。

若装入的初值n为奇数,则在(n+1)/2个计数期间,输出保持高电平,在(n-1)/2个计数期间,输出保持低电平。即输出的高电平比低电平多一个时钟周期。

若装入的初值n为偶数,则输出 1:1的方波。

当减量计数未计完时,再次门控时,则停止当前计数,重新从初值开始进行减1计数。

当GATE为低电平或下降沿时禁止计数且OUT输出被拉高; 当GATE为高时,允许计数。

#### Mode 3

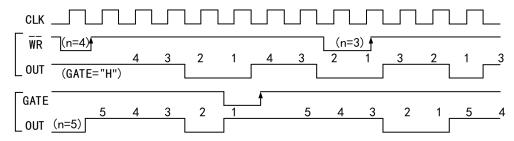



图7-3-4 计数方式3时序图

### 7.3.5 方式 4: 软件触发选通

装入计数初值n之后,在GATE为高时从初值开始进行减1计数,此时OUT输出为高电平;当计数结束即计数到0时,输出一个时钟周期负脉冲。计数完成再次门控时,计数器不计数。

当减量计数未计完时,再次门控时,继续当前计数。

当GATE为低电平或下降沿时禁止计数: 当GATE为高时,允许计数。

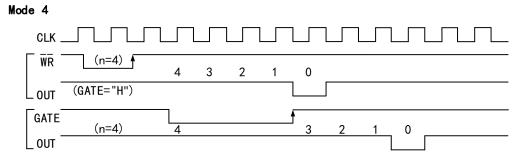



图7-3-5 计数方式4时序图

### 7.3.6 方式 5: 硬件触发选通

装入计数初值n之后,GATE由低变高时从初值开始进行减1计数,此时OUT输出为高电平;当计数结束即计数到0时,输出一个时钟周期负脉冲。计数完成再次门控时,计数器从初值重新开始进行减1计数。

当减量计数未计完时,再次门控时,停止当前计数,重新从初值开始进行减1计数。

当GATE为低电平或下降沿时不起作用;当GATE为高时,不起作用,只有当GATE为上升沿时才计数。

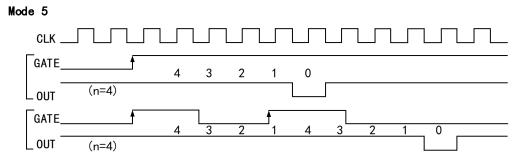



图7-3-6 计数方式5时序图

# 7.4 加法计数工作方式

为方便说明, 令 M=4294967295=2<sup>32</sup>-1 , 为加法计数时的最大值 。

若初值为 4294967291,则记为(M-4);若为 4294967292,则记为(M-3),以此类推。

### 7.4.1 方式 0: 计数结束产生中断

当采用该方式工作时,当赋初值 n 后,若门控信号 GATE 为高电平时,计数器马上开始作加 1 计数,计数器输出 OUT 变成低电平,当计数结束即计数器的值变为 M 时,计数器输出 OUT 变成高电平,并且一直保持到重新装入初值或复位时为止。如果对正在做计数的计数器装入一个新值,则计数器又从新装入的计数值开始,重新作加量计数。

#### \*ART Technology

可用门控端 GATE 控制计数,当 GATE=0 时,禁止计数,当 GATE=1 时,允许计数。输出端OUT由低变高可以用来作为中断请求信号。时序图如图7-4-1所示。

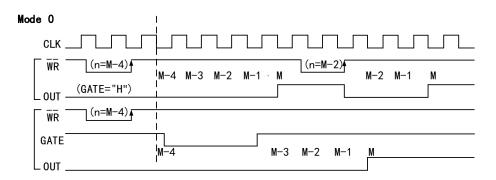



图7-4-1 计数方式0时序图

### 7.4.2 方式 1: 可编程单次脉冲

该方式要在门控信号 GATE 作用下工作。当装入计数初值 n 之后,输出 OUT 变成高电平,要等 GATE 有上边沿时开始计数,此时输出 OUT 变成低电平,当计数结束即计数到 M 时,输出 OUT 又 变成高电平,即输出单次脉冲的宽度由 M 与装入的计数初值 n 的差值(即 M-n)来决定。

如当前操作还未完,又有一次 GATE 上升沿时,则停止当前计数,又重新从 n 开始计数,这时输出单次脉冲就被加宽。

当计数器加量计数未到 M 时,又装入一个新的计数值 n1,则这个新值,只有当 GATE 上升沿时,计数器才从 n1 开始计数。时序图如图 7-4-2 所示。

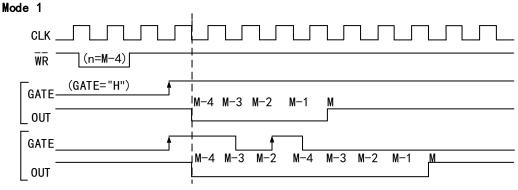



图7-4-2 计数方式1时序图

### 7.4.3 方式 2: 频率发生器

设置此方式后,计数器装入初始值n,从(n+1)开始计数,OUT变高电平,加到M时OUT变低电平。经过一个CLK周期,OUT恢复高电平,且计数器又自动装入初值n,重新从(n+1)开始计数。因此输出端将不断输出负脉冲,其宽度等于一个时钟周期,两负脉冲间的时钟个数等于M与计数器装入的初始值n的差值(即M-n)。

当GATE=0时,禁止计数,当GATE=1时,允许计数。若计数中改变初值,下次有效。时序图 如图7-4-3所示。

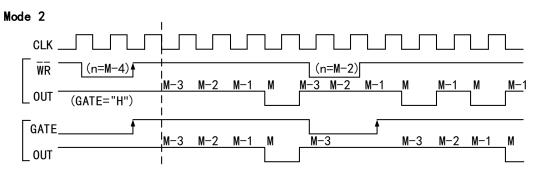



图7-4-3 计数方式2时序图

### 7.4.4 方式 3: 方波频率发生器

与方式 2 类似,当装入一个计数器初值 n 后,从 (n+1) 开始计数,在 GATE 信号为高电平时启动计数,定时/计数器此时作加 1 计数,在完成前一半计数时,输出一直保持高电平,而在进行后一半计数时,输出又变成低电平。

若装入的初值 n 为奇数,则输出为 1: 1 的方波。若装入的初值 n 为偶数,则在前[(M-n+1)/2]个计数期间,输出保持高电平;在后[(M-n-1)/2]个计数期间,输出保持低电平,即 OUT 输出的高电平比低电平多一个时钟周期。若计数中改变初值,下次有效。

当 GATE=0 时,禁止计数。当 GATE=1 时,允许计数。时序图如图 7-4-4 所示。

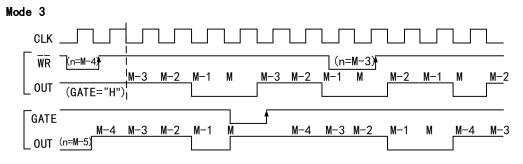



图7-4-4 计数方式3时序图

### 7.4.5 方式 4: 软件触发选通

当采用该方式工作时,当装入一个计数器初值n后便开始计数,输出OUT即变为高电平。

当计数到M后(即计数结束),便立即在输出端送出一个宽度等于一个时钟周期的负脉冲。如果在一次计数期间,装入了一个新的计数值,则立即有效。

当GATE=0时,禁止计数;当GATE=1时,允许计数。时序图如图7-4-5所示。

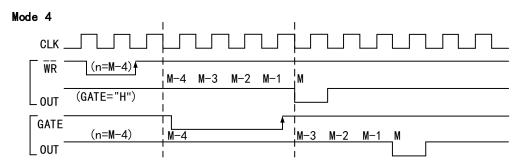



图7-4-5 计数方式4时序图

### 7.4.6 方式 5: 硬件触发选通

当采用该方式工作时,在GATE信号的上升沿才启动计数器开始计数(所以称之为硬件触发),输出OUT一直保持高电平,当计数到M时,输出一个宽度等于时钟周期的负脉冲。

此后可用GATE信号的上升沿重新触发,便又从初值开始计数,计数期间,输出又一直保持高电平。当计数器加量计数未到M时,又装入一个新的计数值n1,则这个新值,只有当GATE上升沿时,计数器才从n1开始计数。时序图如图7-4-6所示。

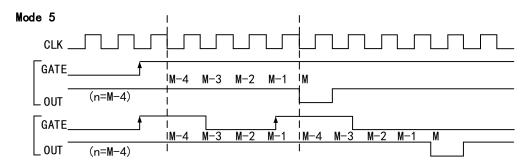



图7-4-6 计数方式5时序图

# ■ 8 保修

### 8.1 保修

产品自出厂之日起,两年内用户凡遵守运输、贮存和使用规则,而质量低于产品标准者公司免费修理。

### 8.2 技术支持与服务

如果您认为您的产品出现故障,请遵循以下步骤:

- 1)、描述问题现象。
- 2)、收集所遇问题的信息。

如:硬件版本号、软件安装包版本号、用户手册版本号、物理连接、软件界面设置、操作系统、电脑屏幕上不正常信息、其他信息等。

硬件版本号: 板卡上的版本号,如 D4056200-00。

软件安装包版本号:安装软件时出现的版本号或在"开始"菜单  $\rightarrow$  所有程序  $\rightarrow$  阿尔泰 测控演示系统  $\rightarrow$  USB5630 中查询。

用户手册版本号: 在用户手册中关于本手册中查找,如 V6.00.00

- 3)、打电话给您的供货商,描述故障问题。
- 4)、如果您的产品被诊断为发生故障,我们会尽快为您解决。

## 8.3 返修注意事项

在公司售出的产品包装中,用户将会找到该产品和这本说明书,同时还有产品质保卡。产品质保卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡、用户问题描述单同产品一起寄回本公司,以便我们尽快的为您解决问题。



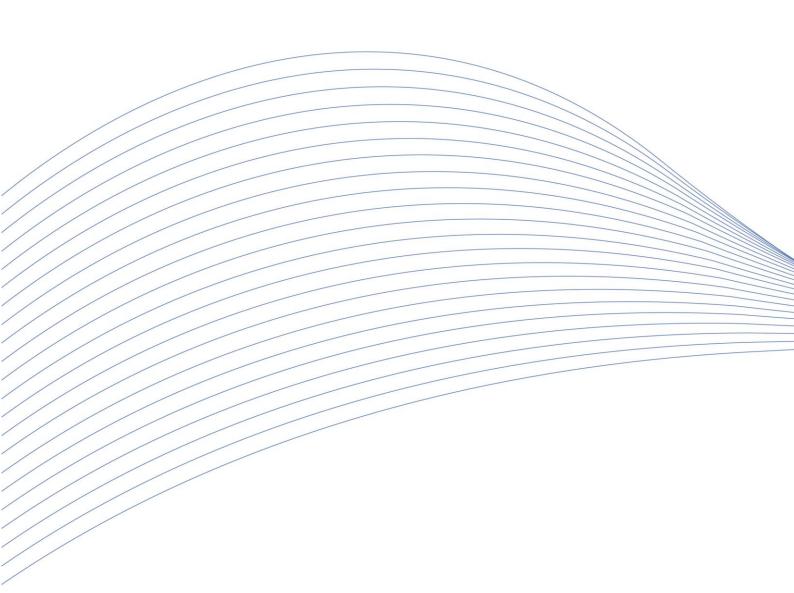
# ■ 附录 A: 各种标识、概念的命名约定

CN1、CN2......CNn 表示设备外部引线连接器(Connector),如 37 芯 D 型头等, n 为连接器序号(Number).

JP1、JP2.....JPn 表示跨接套或跳线器(Jumper), n 为跳线器序号(Number).

AIO、AI1.....AIn 表示模拟量输入通道引脚(Analog Input), n 为模拟量输入通道编号(Number).

AO0、AO1.....AOn 表示模拟量输出通道引脚(Analog Output), n 为模拟量输出通道编号 (Number).


DIO、DI1......DIn 表示数字量 I/O 输入引脚(Digital Input), n 为数字量输入通道编号(Number).

DO0、DO1......DOn 表示数字量 I/O 输出引脚(Digital Output), n 为数字量输出通道编号 (Number).

ATR 模拟量触发源信号(Analog Trigger).

DTR 数字量触发源信号(Digital Trigger).

ADPara 指的是 AD 初始化函数中的 ADPara 参数,它的实际类型为结构体 USB5630\_PARA\_AD.



# 阿尔泰科技

服务热线:400-860-3335

网址:www.art-control.com