ART2535 数字量输入输出卡

硬件使用说明书

阿尔泰科技发展有限公司 产品研发部修订

目 录

I	录	1
	第一章 功能概述	2
	第一节、产品应用	
	第二节、DIO 数字量输入/输出功能	2
	第三节、产品安装核对表	2
	第四节、安装指导	2
	一、软件安装指导	2
	二、硬件安装指导	2
	第二章 元件布局图及简要说明	3
	第一节、主要元件布局图	3
	第二节、主要元件功能说明	3
	一、信号输入输出连接器	3
	二、板基地址选择	3
	三、跳线器	5
	第三章 信号输入输出连接器	7
	第五章 各种信号的连接方法	9
	第一节、数字量信号输入的连接方法	9
	第二节、数字量信号输出的连接方法	9
	第六章 地址说明	10
	第七章 产品的应用注意事项、校准、保修	12
	第一节、注意事项	12
	第二节、保修	12
	附录 A: 各种标识、概念的命名约定	13

第一章 功能概述

随着基于 PC/104 总线系统的推广应用,PC/104 总线逐渐成为嵌入式 PC 机的机械标准, 其秉承了 IBM-PC 开放式总线结构的优点,与 IBM-PC 机完全兼容,具备体积小(96*90mm 栈接式结构)、低成本、高可靠性、长寿命、工作范围宽、编程调试方便、外围模块齐全等优点,所以在测试领域基于 PC/104 的智能仪器得到了广泛应用,PC/104 系列产品已广泛应用于通信设备、车辆导航、工程控制等各种领域。

第一节、产品应用

ART2535 是一种基于 PC104 总线的数字量 I/O 卡,可以通过微处理器对外部信号进行采集、监测和控制。ART2535 可通过 I/O 模块接收和控制高电平的信号;接收低电平信号(TTL/DTL 相容)或开关信号;驱动指示灯或控制记录设备;与计算机间并行传输数据,主要应用于:

- ◆ 野外测控
- ◆ 信号采集
- ◆ 医疗设备
- ◆ 伺服控制
- ◆ 电子产品质量检测

第二节、DIO 数字量输入/输出功能

- ◆ 48 路 TTL/DTL 相容输入/输出
- ◆ 输入/输出类型: TTL/DTL 相容
- ◆ 48 路可分为 DIO0~DIO7、DIO8~DIO15、DIO16~DIO23、DIO24~DIO31、DIO32~DIO39、DIO40~ DIO47 六组,每组可单独设置为输入或输出
- ◆ 数字量输入:

逻辑电平 0: +0.8V (最大)

逻辑电平 1: +2.2V~5V

内部跳线可选择输入的初始状态,请参考第二章 三 跳线器。

◆ 数字量输出:

最大负载 5V,8mA

第三节、产品安装核对表

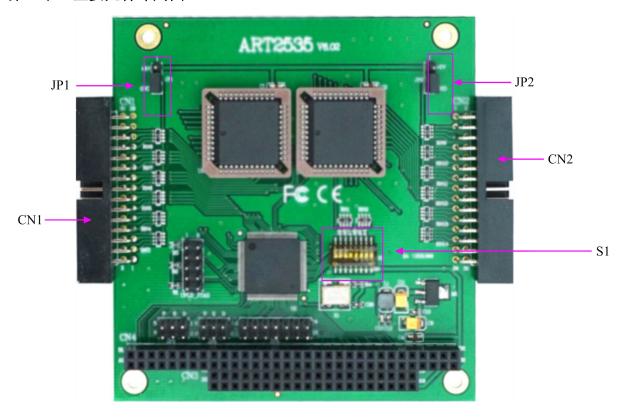
打开 ART2535 板卡包装后, 你将会发现如下物品:

- 1、ART2535 板卡一个
- 2、ART软件光盘一张,该光盘包括如下内容:
 - a) 本公司所有产品驱动程序,用户可在 PC104 目录下找到 ART2535 驱动程序;
 - b) 用户手册 (pdf 格式电子文档);

第四节、安装指导

一、软件安装指导

在不同操作系统下安装ART2535板卡的方法一致,在本公司提供的光盘中含有安装程序Setup.exe,用户双击此安装程序按界面提示即可完成安装。


二、硬件安装指导

在硬件安装前首先关闭系统电源,待板卡固定后开机,开机后系统会自动弹出硬件安装向导,用户可选择系统自动安装或手动安装。

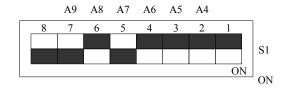
注意:不可带电插拔板卡。

第二章 元件布局图及简要说明

第一节、主要元件布局图

第二节、主要元件功能说明

请参考第一节中的布局图,了解下面各主要元件的大体功能。


一、信号输入输出连接器

CN1、CN2: DIO 数字量信号输入/输出连接器

连接器的详细说明请参考《信号输入输出连接器》章节。

二、板基地址选择

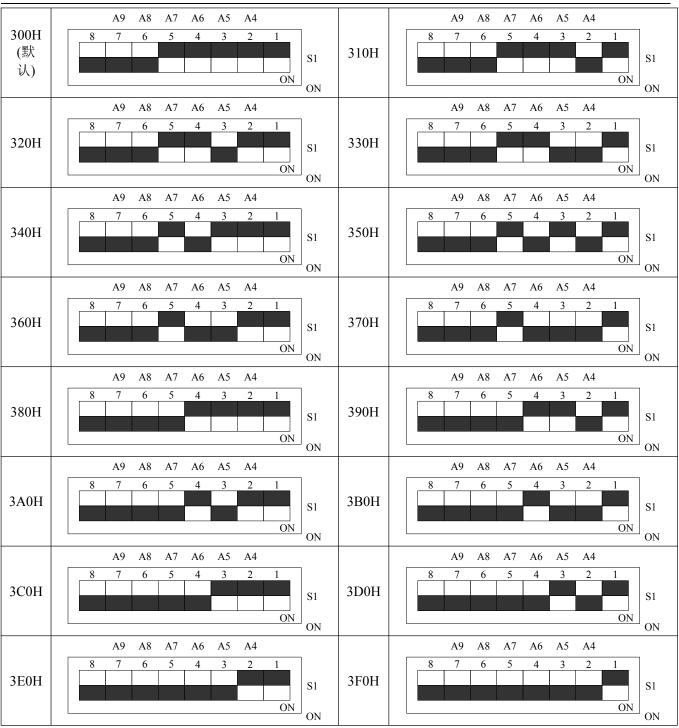
S1: ART2535 板基地址拨码开关。板基地址可设置成 200H~3F0H 之间可被 16 整除的二进制码,板基地址默认为 300H,将占用基地址起的连续 8 个 I/O 地址。开关的第 1、8 位未用,第 2、3、4、5、6、7 位分别对应地址 A4、A5、A6、A7、A8、A9。拨码开关 S1 置"ON"高有效值为 1,反之则低有效值为 0。板基地址选择开关 S1 如下图。



其基地址的配置方法为:

地址位	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
X为可配置位	未用	未用	X	X	X	Х	X	Х	0	0	0	0
	第3个十六进制位			第2个十六进制位				第1个十六进制位				

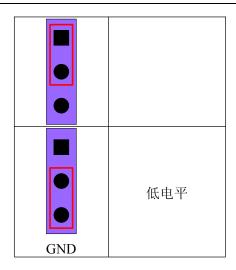
注意:表中标识为"0"的位为固定值,只有标识为"x"的位可以由S1跳线器改变,因此用户要正确配置基地址,就只须改变表中的相应位,便可容易的产生的想要的基地址。


比如说出厂默认基地址 300H 的配置,只需将 S1 的 A9、A8 位拨到 "ON",其余位拨到 "OFF"。如下图:

常用的基地址选择有:

	月的基地址选择有:		
地址	板基地址拨码开关图示	地址	板基地址拨码开关图示
200Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON	210Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON
220Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON	230Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON
240Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON	250Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON
260Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON	270Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON
280Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON	290Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON
2A0H	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 ON ON	2В0Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 ON ON
2С0Н	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON	2D0H	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON
2E0H	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON	2F0H	A9 A8 A7 A6 A5 A4 8 7 6 5 4 3 2 1 S1 ON

❤阿尔泰科技发展有限公司


三、跳线器

JP1: 数字量信号 DI00~DI023 在输入状态下默认信号高低电平的选择

JP2: 数字量信号 DI024~DI047 在输入状态下默认信号高低电平的选择

在输入状态下: 当 JP1、JP2 的 1-2 脚相连时(即接+5V),默认输入为高电平; 当 2-3 脚相连时(即接地),默认输入为低电平。如下表所示:

JP1、JP2	默认输入状态
+5V	高电平

- 注: 1) 当 I/O 端口设为输入状态时,相应的跳线必须接地或者+5V,不能置空;
 - 2) 但当 I/0 口有外部信号输入时,采集到的相应端口的输入状态就随输入信号的高低电平变化而变化。

第三章 信号输入输出连接器

关于30芯插头CN1的管脚定义(图片形式)

GND	30		29	GND
GND	28	9 6	27	GND
DIO23	26	9 6	25	DIO22
DIO21	24	-0 O-	23	DIO20
DIO19	22	- -	21	DIO18
DIO17	20	-0 G	19	DIO16
DIO15	18	-0 O-	17	DIO14
DIO13	16	- 	15	DIO12
DIO11	14	-0 O-	13	DIO10
DIO9	12	-0 O-	11	DIO8
DIO7	10	-0 O-	9	DIO6
DIO5	8	-0 O-	7	DIO4
DIO3	6	-0 G-	5	DIO2
DIO1	4	9 6	3	DIO0
+5V	2) 	1	+5V
		<u> </u>		

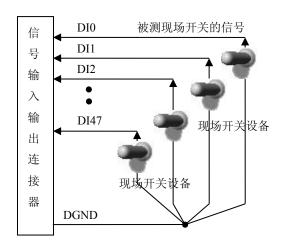
关于30芯插头CN1的管脚定义(表格形式)

> + + + + + + + + + + + + + + + + + + +						
管脚信号名称	管脚特性	管脚功能定义				
DIO0-DIO23	Input/Output	数字量输入/输出端				
+5V	PWR	+5V电源输出				
GND	GND	数字信号地				

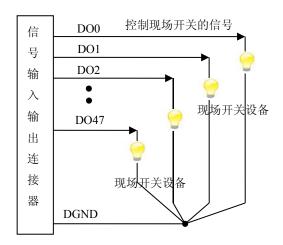
注意,+5V电源由PC104总线接口供电

关于30芯插头CN2的管脚定义(图片形式)

+5V	1		2	+5V
DIO24	3	-0 0-	4	DIO25
DIO26	5	-	6	DIO27
DIO28	7	_	8	DIO29
DIO30	9	~ ~	10	DIO31
DIO32	11	5	12	DIO33
DIO34	13	9	14	DIO35
DIO36	15	9	16	DIO37
DIO38	17	5	18	DIO39
DIO40	19	9	20	DIO41
DIO42	21	5	22	DIO43
DIO44	23	9	24	DIO45
DIO46	25	9	26	DIO47
GND	27		28	GND
GND	29		30	GND
		Γ		


关于30芯插头CN2管脚定义(表格形式)

管脚信号名称	管脚特性	管脚功能定义
DIO24-DIO47	Input/Output	数字量输入/输出端
+5V	PWR	+5V电源输出
GND	GND	数字信号地


注意,+5V电源由PC104总线接口供电

第五章 各种信号的连接方法

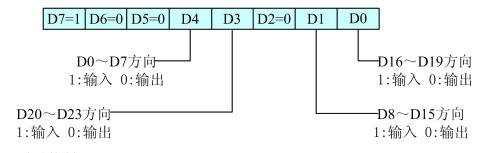
第一节、数字量信号输入的连接方法

第二节、数字量信号输出的连接方法

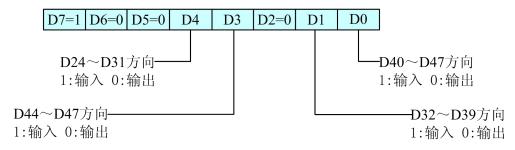
第六章 地址说明

地址计算公式:访问地址=基地址+偏移地址

Δ3 I Δ9 I	Δ1 Ι	Δ()
110 112	111	ΛU
	A3 A2	A3 A2 A1


基地址是由拨码开关 S1 控制的 (A9~A4), 用户根据需要自己设置 (每个卡基地址唯一)。具体设置方法请参考《板基地址选择》章节。

偏移地址 A3~A0 是由软件控制的。


偏移地址和通道对应关系表:

偏移地址	通道
00	DO~D7路
02	D8~D15 路
04	D16~D23 路
06	控制 D0~D23 路输入/输出状态
08	D24~D31 路
OA	D32~39
0C	D40~D47
0E	控制 D24~D47 路输入/输出状态
注: 其	他偏移地址无效

06 地址控制

0E 地址控制

注意: 假设本卡基地址是 300H,则本卡所占用的有效地址是(300~30EH)。其他的 PC104 板卡不能占用此段地址。

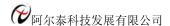
举例说明:

A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
1	1	0	0	0	0	X	X	X	X

基地址是: 0x300 (ART2535 出厂的默认地址是 0x300)。

地址是 0x300, 即可访问 D0~D7 通道;

第七章 产品的应用注意事项、校准、保修


第一节、注意事项

在公司售出的产品包装中,用户将会找到这本说明书和ART2535板,同时还有产品质保卡。产品质保卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡同产品一起,寄回本公司,以便我们能尽快的帮用户解决问题。

在使用ART2535板时,应注意ART2535板正面的IC芯片不要用手去摸,防止芯片受到静电的危害。

第二节、保修

ART2535自出厂之日起,两年内凡用户遵守运输,贮存和使用规则,而质量低于产品标准者公司免费修理。

附录 A: 各种标识、概念的命名约定

CN1、CN2......CNn 表示设备外部引线连接器(Connector),如 37 芯 D 型头等, n 为连接器序号(Number).

JP1、JP2......JPn 表示跨接套或跳线器(Jumper), n 为跳线器序号(Number).

AI0、AI1.....AIn 表示模拟量输入通道引脚(Analog Input), n 为模拟量输入通道编号(Number).

AO0、AO1.....AOn 表示模拟量输出通道引脚(Analog Output), n 为模拟量输出通道编号(Number).

DIO、DI1......DIn 表示数字量 I/O 输入引脚(Digital Input), n 为数字量输入通道编号(Number).

DO0、DO1......DOn 表示数字量 I/O 输出引脚(Digital Output), n 为数字量输出通道编号(Number).

ATR 模拟量触发源信号(Analog Trigger).

DTR 数字量触发源信号(Digital Trigger).

ADPara 指的是 AD 初始化函数中的 ADPara 参数,它的实际类型为结构体 PCI8753_PARA_AD.