ART2532 数字量输入输出卡

硬件使用说明书

北京阿尔泰科技发展有限公司 产品研发部修订

目 录

目	₹	1
	第一章 功能概述	2
	第一节、产品应用	2
	第二节、DI 数字量输入功能	2
	第三节、DO 数字量输出功能	2
	第四节、中断申请功能	2
	第二章 元件布局图及简要说明	3
	第一节、主要元件布局图	3
	第二节、主要元件功能说明	3
	一、信号输入输出连接器	3
	二、板基地址选择	3
	三、中断级别选择跳线器	6
	四、跳线器	6
	第三章 信号输入输出连接器	7
	第一节、DI 数字量信号输入连接器定义	
	第二节、DO 数字量信号输出连接器定义	7
	第三节、跳线器设置	8
	第五章 各种信号的连接方法	
	第一节、湿接点信号输入的连接方法	
	第二节、TTL/CMOS 信号输入的连接方法	9
	第三节、TTL 信号输出的连接方法	
	第六章 地址说明	
	第七章 产品的应用注意事项、校准、保修	
	第一节、注意事项	
	第二节、保修	11
	附录 A. 各种标识、概念的命名约定	12

第一章 功能概述

随着基于 PC/104 总线系统的推广应用,PC/104 总线逐渐成为嵌入式 PC 机的机械标准, 其秉承了 IBM-PC 开放式总线结构的优点,与 IBM-PC 机完全兼容,具备体积小(96*90mm 栈接式结构)、低成本、高可靠性、长寿命、工作范围宽、编程调试方便、外围模块齐全等优点,所以在测试领域基于 PC/104 的智能仪器得到了广泛应用,PC/104 系列产品已广泛应用于通信设备、车辆导航、工程控制等各种领域。

第一节、产品应用

ART2532 是一种基于 PC104 总线的数字量 I/O 卡,可以通过微处理器对外部信号进行采集、监测和控制。数字量输入每路是共阴极输入方式,通过光耦可采集到外部输入信号。

ART2532 可通过 I/O 模块接收和控制高电平的信号;接收低电平信号(TTL)或开关信号;驱动指示灯或控制记录设备;与计算机间并行传输数据,主要应用于:

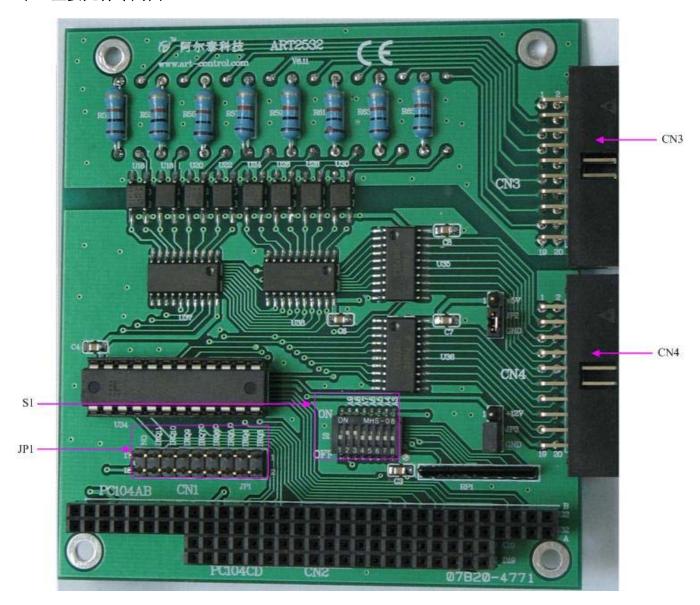
- ◆ 野外测控
- ◆ 信号采集
- ◆ 医疗设备
- ◆ 伺服控制
- ◆ 电子产品质量检测

第二节、DI 数字量输入功能

- ◆ 16路隔离数字量输入
- ◆ 输入类型:湿接点(共阴极)
- ◆ 输入高电平: +4V~+30V
- ◆ 输入低电平: 0~+1V
- ◆ 隔离电压: 3750V

第三节、DO 数字量输出功能

- ◆ 16 路 TTL 输出
- ◆ 输出类型: TTL 电平 (无隔离)


第四节、中断申请功能

- ◆ 中断申请通道数: 1 路(DI0)
- ◆ 中断申请级别: IRQ3、IRQ4、IRQ5、IRQ6、IRQ7、IRQ9、IRQ10、IRQ11
- ◆ 中断申请信号有效电平: 高电平有效
- ◆ 中断申请信号电平特性: TTL 电平兼容

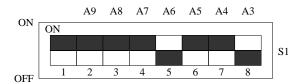
第二章 元件布局图及简要说明

第一节、主要元件布局图

第二节、主要元件功能说明

请参考第一节中的布局图,了解下面各主要元件的大体功能。

一、信号输入输出连接器


CN3: DI 数字量信号输入连接器

CN4: DO 数字量信号输出连接器

连接器的详细说明请参考《信号输入输出连接器》章节。

二、板基地址选择

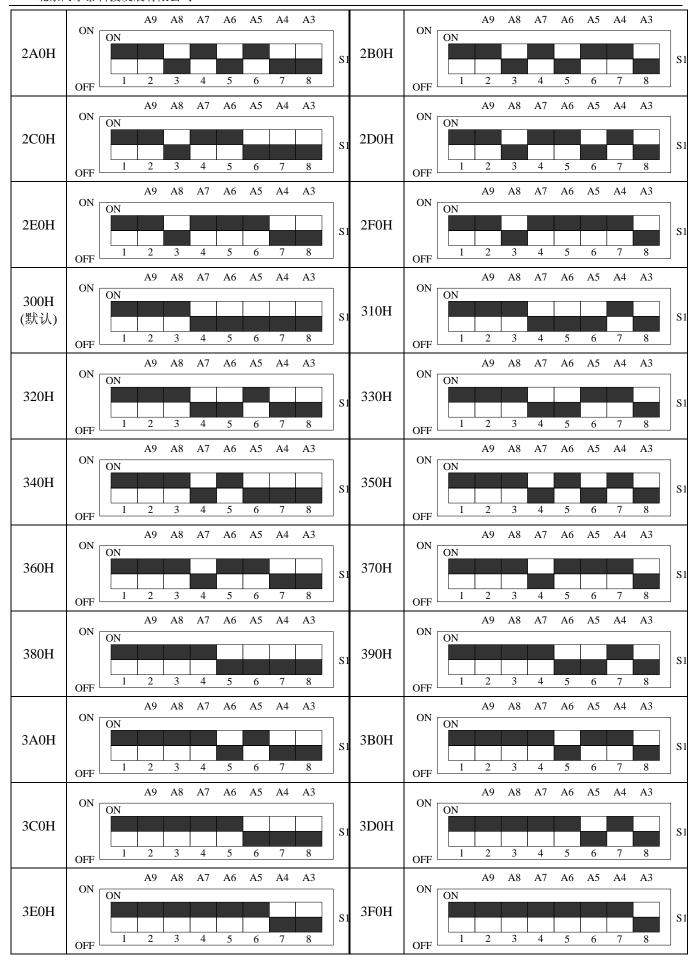
S1: ART2532 板基地址拨码开关。板基地址可设置成 200H~3F0H 之间可被 16 整除的二进制码,板基 地址默认为 300H,将占用基地址起的连续 6 个 I/O 地址。开关的第 1 位未用, 2、3、4、5、6、7、8 位分别 对应地址 A9、A8、A7、A6、A5、A4、A3。拨码开关 S1 置 "ON" 高有效值为 1, 开关置 "OFF" 低有效值 为 0。板基地址选择开关 S1 如下图。



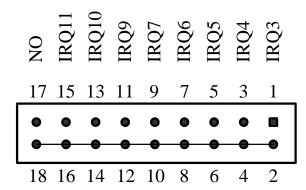
其基地址的配置方法为:

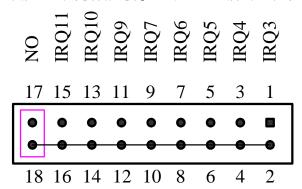
地址位	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
X 为可配置位	未用	未用	X	X	X	X	X	X	X	0	0	0
	第3个-	十六进制	位		第2个-	十六进制	位		第1个-	十六进制	位	

注意:表中标识为"0"的位为固定值,只有标识为"x"的位可以由S1跳线器改变,因此用户要正确配置基地址,就只须改变表中的相应位,便可容易的产生的想要的基地址。

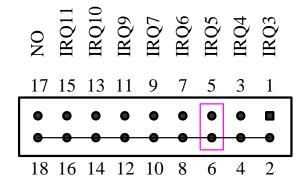

比如说出厂默认基地址 300H 的配置,只需将 S1 的 A9、A8 位拨到 "ON",其余位拨到 "OFF"。如下图:

常用的基地址选择有:


	的基地址选	作月	:																
地址		板基	地址	上拨码	計	た图 き	示			地址		板基	基地址	上拨码	丹ラ	(图)	芹		
	ON CON	A9	A8	A7	A6	A5	A4	A3			ON CON	A9	A8	A7	A6	A5	A4	A3	
20011	ON		21011	ON															
200H									S1	210H									S1
	OFF 1	2	3	4	5	6	7	8			OFF 1	2	3	4	5	6	7	8	╛
	OM	A9	A8	A7	A6	A5	A4	A3			OM	A9	A8	A7	A6	A5	A4	A3	
22011	ON									22011	ON								7
220H									S1	230H									S1
	OFF 1	2	3	4	5	6	7	8			OFF 1	2	3	4	5	6	7	8]
	ON	A9	A8	A7	A6	A5	A4	A3			ON CON	A9	A8	A7	A6	A5	A4	A3	
24011	ON								S1	250H	ON								
240H																			S1
	OFF 1	2	3	4	5	6	7	8			OFF 1	2	3	4	5	6	7	8	╛╽
	ON CON	A9	A8	A7	A6	A5	A4	A3	_		ON CON	A9	A8	A7	A6	A5	A4	A3	
260H	ON									270H	ON								
200H									S1	2700									S1
	OFF 1	2	3	4	5	6	7	8			OFF 1	2	3	4	5	6	7	8	╛
	ON	A9	A8	A7	A6	A5	A4	A3			ON	A9	A8	A7	A6	A5	A4	A3	
28011	ON									290H	ON								
280H									S1	29UN									S1
	OFF 1	2	3	4	5	6	7	8			OFF 1	2	3	4	5	6	7	8	



三、中断级别选择跳线器


JP1:选择中断级别,可选择主机中断级别为: IRQ3、IRQ4、IRQ5、IRQ6、IRQ7、IRQ9、IRQ10、IRQ11。 跳线器如下图:

例如, 当跨接套短接 JP1 的 17、18 脚时, 表示未选择任一中断级别, 如下图所示:

当跨接套短接 JP1 的 5、6 脚时,表示选择中断级别 IRQ5,如下图所示:

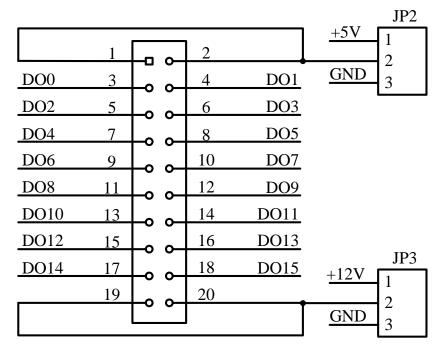
四、跳线器

JP2: 数字量信号输出连接器 CN4 的第 1×2 管脚+5V 电源或地的选择 JP3: 数字量信号输出连接器 CN4 的第 19×20 管脚+12V 电源或地的选择 具体使用方法请参考《<u>跳线器设置</u>》章节。

第三章 信号输入输出连接器

第一节、DI 数字量信号输入连接器定义

关于20芯插头CN3的管脚定义(图片形式)


DI.COM	1	<u></u>	2	DI.COM
DI0	3		4	DI1
DI2	5		6	DI3
DI4	7	- ∘	8	DI5
DI6	9	- ∘	10	DI7
DI8	11	- 0 0-	12	DI9
DI10	13	- ∘	14	DI11
DI12	15	- 0 0-	16	DI13
DI14	17	- ∘	18	DI15
DI.COM	19	├ °	20	DI.COM
	-			

关于20芯插头CN3的管脚定义(表格形式)

管脚信号名称	管脚特性	管脚功能定义
DI0-DI15	Input	数字量输入
DI.COM	Input	数字量输入公共端

第二节、DO 数字量信号输出连接器定义

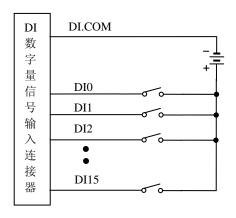
关于20芯插头CN4的管脚定义(图片形式)

关于20芯插头CN4的管脚定义(表格形式)

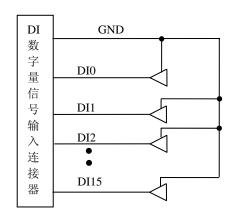
管脚信号名称	管脚特性	管脚功能定义
DO0-DO15	Output	数字量输出

如图所示, CN4的第1、2管脚可由跳线器JP2选择接入+5V电源或地, 第19、20管脚可由跳线器JP3选择接入+12V电源或地。跳线器具体设置请参考《<u>跳线器设置</u>》章节。

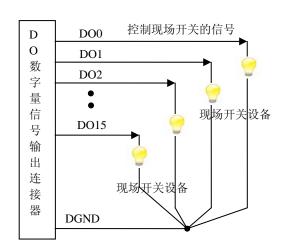
第三节、跳线器设置


JP2	CN4的1、2管脚连接
	+5V
	GND

JP3	CN4的19、20管脚连接
	+12V
	GND



第五章 各种信号的连接方法


第一节、湿接点信号输入的连接方法

第二节、TTL/CMOS 信号输入的连接方法

第三节、TTL 信号输出的连接方法

第六章 地址说明

地址计算公式:访问地址=基地址+偏移地址

A	A8	A7	A6	A5	A4	A3	A2	A1	A0
---	----	----	----	----	----	----	----	----	----

基地址是由拨码开关S1 控制的(A9~A3),用户根据需要自己设置(每个卡基地址唯一)。具体设置方法请参考《板基地址选择》章节。

偏移地址 A2~A0 是由软件控制的,只有偶地址有效。

偏移地址和通道对应关系表:

偏移地址	通道
00	D0~D7 路
02	D8~D15 路
04	D16~D23 路
06	D24~D31 路
注: 其	他偏移地址无效

注意: 假设本卡基地址是 300H,则本卡所占用的有效地址是 (300~306H)。其他的 PC104 板卡不能占用 此段地址。

举例说明:

A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
1	1	0	0	0	0	0	X	X	X

基地址是: 0x300 (ART2532 出厂的默认地址是 0x300)。

地址是 0x300, 即可访问 D0~D7 通道;

地址是 0x302, 即可访问 D8~D15 通道。

第七章 产品的应用注意事项、校准、保修

第一节、注意事项

在公司售出的产品包装中,用户将会找到这本说明书和ART2532板,同时还有产品质保卡。产品质保卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡同产品一起,寄回本公司,以便我们能尽快的帮用户解决问题。

在使用ART2532板时,应注意ART2532板正面的IC芯片不要用手去摸,防止芯片受到静电的危害。

第二节、保修

ART2532自出厂之日起,两年内凡用户遵守运输,贮存和使用规则,而质量低于产品标准者公司免费修理。

附录 A: 各种标识、概念的命名约定

CN1、CN2......CNn 表示设备外部引线连接器(Connector),如 37 芯 D 型头等, n 为连接器序号(Number).

JP1、JP2.....JPn 表示跨接套或跳线器(Jumper), n 为跳线器序号(Number).

AIO、AI1.....AIn 表示模拟量输入通道引脚(Analog Input), n 为模拟量输入通道编号(Number).

AOO、AO1.....AOn 表示模拟量输出通道引脚(Analog Output), n 为模拟量输出通道编号(Number).

DIO、DI1......DIn 表示数字量 I/O 输入引脚(Digital Input), n 为数字量输入通道编号(Number).

DO0、DO1......DOn 表示数字量 I/O 输出引脚(Digital Output), n 为数字量输出通道编号(Number).

ATR 模拟量触发源信号(Analog Trigger).

DTR 数字量触发源信号(Digital Trigger).

ADPara 指的是 AD 初始化函数中的 ADPara 参数,它的实际类型为结构体 PCI8753_PARA_AD.