ART2007 数据采集卡

硬件使用说明书

北京阿尔泰科技发展有限公司 产品研发部修订

目 录

录	1
第一章 功能概述	2
第一节、产品应用	2
第二节、AD 模拟量输入功能	2
第三节、DI 数字量输入功能	2
第四节、DO 数字量输出功能	2
第五节、其他指标	3
第六节、板卡尺寸	3
第七节、产品安装核对表	
第八节、安装指导	
一、软件安装指导	3
二、硬件安装指导	3
第二章 元件布局图及简要说明	
第一节、主要元件布局图	
第二节、主要元件功能说明	
一、信号输入输出连接器	4
二、电位器	
三、板基地址选择	
四、指示灯	6
第三章 信号输入输出连接器	
第一节、模拟信号输入连接器定义	
第二节、DI 数字量信号输入连接器定义	
第四章 各种信号的连接方法	9
第一节、AD 模拟量输入的信号连接方法	9
一、AD 单端输入连接方式	9
二、AD 双端输入连接方式	9
第二节、DI 数字量输入的信号连接方法	10
第三节、DO 数字量输出的信号连接方法	10
第五章 数据格式、排放顺序及换算关系	11
第一节、AD 模拟量输入数据格式及码值换算	11
一、AD 双极性模拟量输入的数据格式	11
二、AD 单极性模拟量输入数据格式	11
第二节、AD 单通道与多通道采集时的数据排放顺序	11
一、单通道	11
二、多通道	11
第六章 寄存器地址分配表	13
第七章 产品的应用注意事项、校准、保修	14
第一节、注意事项	
第二节、AD 模拟量输入的校准	
第三节、保修	14
附录 A: 各种标识、概念的命名约定	15

第一章 功能概述

随着基于 PC/104 总线系统的推广应用,PC/104 总线逐渐成为嵌入式 PC 机的机械标准,其秉承了 IBM-PC 开放式总线结构的优点,与 IBM-PC 机完全兼容,具备体积小(96*90mm 栈接式结构)、低成本、高可靠性、长寿命、工业范围宽、编程调试方便、外围模块齐全等优点,所以在测试领域基于 PC/104 的智能仪器得到了广泛应用,PC/104 系列产品已广泛应用于通信设备、车辆导航、工程控制等各种领域。

第一节、产品应用

本卡是一种基于 PC104 总线的数据采集卡,可以通过微处理器对外部信号进行采集、监测和控制。它的主要应用场合为:

- ◆ 野外测控
- ◆ 电子产品质量检测
- ◆ 信号采集
- ◆ 医疗设备
- ◆ 伺服控制

第二节、AD 模拟量输入功能

- ◆ 转换器类型: AD7321
- ◆ 输入量程(InputRange): ±10V、±5V、±2.5V、0~10V
- ◆ 转换精度: 13 位(Bit), 第 13 位为符号位
- ◆ 采样速率:最高系统通过率 500KHz,不提供精确的硬件分频功能 说明:各通道实际采样速率 = 采样速率 / 采样通道数
- ◆ 模拟输入通道总数: 32 路单端, 16 路双端
- ◆ 采样通道数:软件可选择,通过设置首通道(FirstChannel)和末通道(LastChannel)来实现的 说明:采样通道数 = LastChannel FirstChannel + 1
- ◆ 通道切换方式: 首末通道顺序切换
- ◆ AD 转换时间: <1.6us
- ◆ 程控放大器类型: 默认为 AD8251, 兼容 AD8250、AD8253
- ◆ 程控增益: 1、2、4、8 倍(AD8251)或 1、2、5、10 倍(AD8250)或 1、10、100、1000 倍(AD8253)
- ◆ 模拟输入阻抗: 10MΩ
- ◆ 非线性误差: ±1LSB
- ◆ 系统测量精度: 0.1%
- ◆ 工作温度范围: 0℃ ~ +50℃
- ◆ 存储温度范围: 20℃ ~ +70℃

第三节、DI 数字量输入功能

- ◆ 通道数: 16路
- ◆ 电气标准: TTL 兼容
- ◆ 高电平的最低电压: 2V
- ◆ 低电平的最高电压: 0.8V

第四节、DO 数字量输出功能

◆ 通道数: 16路

- ◆ 电气标准: TTL 兼容
- ◆ 高电平的最低电压: 2.4V
- ◆ 低电平的最高电压: 0.5V
- ◆ 上电输出: 低电平

第五节、其他指标

◆ 板载时钟振荡器: 40MHz

第六节、板卡尺寸

90mm(长) x 96mm(宽)

第七节、产品安装核对表

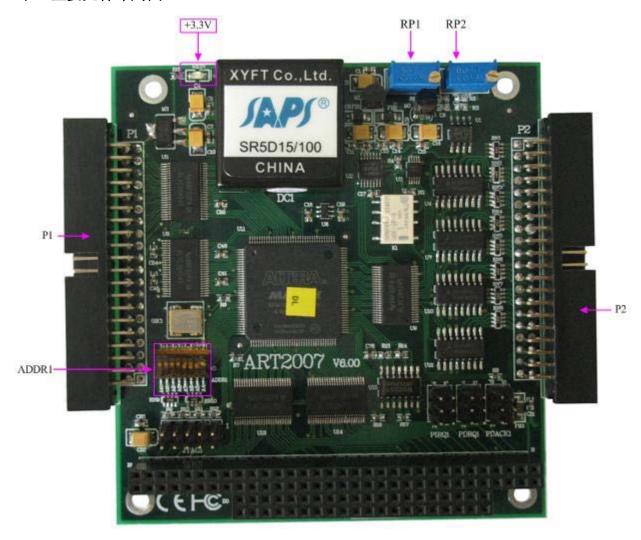
打开 ART2007 板卡包装后, 你将会发现如下物品:

- 1、ART2007 板卡一个
- 2、ART 软件光盘一张, 该光盘包括如下内容:
 - a) 本公司所有产品驱动程序,用户可在 PC104 目录下找到 ART2007 驱动程序;
 - b) 用户手册 (pdf 格式电子文档);

第八节、安装指导

一、软件安装指导

在不同操作系统下安装ART2007板卡的方法一致,在本公司提供的光盘中含有安装程序Setup.exe,用户双击此安装程序按界面提示即可完成安装。


二、硬件安装指导

在硬件安装前首先关闭系统电源,待板卡固定后开机,开机后系统会自动弹出硬件安装向导,用户可选择系统自动安装或手动安装。

注意:不可带电插拔板卡。

第二章 元件布局图及简要说明

第一节、主要元件布局图

第二节、主要元件功能说明

请参考第一节中的布局图,了解下面各主要元件的大体功能。

一、信号输入输出连接器

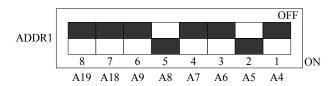
P1: 开关量输入输出信号连接器

P2: 模拟信号输入连接器

以上连接器的详细说明请参考《信号输入输出连接器》章节。

二、电位器

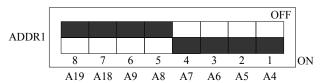
RP1: AD 模拟量信号输入满度调节


RP2: AD 模拟量信号输入零点调节

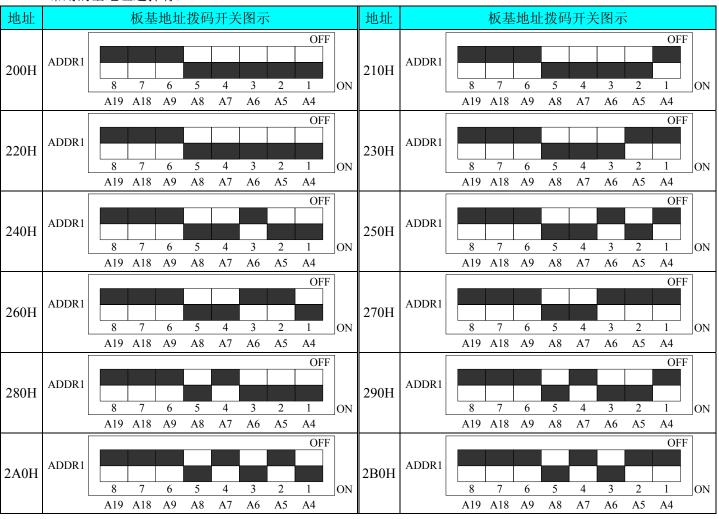
以上电位器的详细说明请参考《产品的应用注意事项、校准、保修》章节。

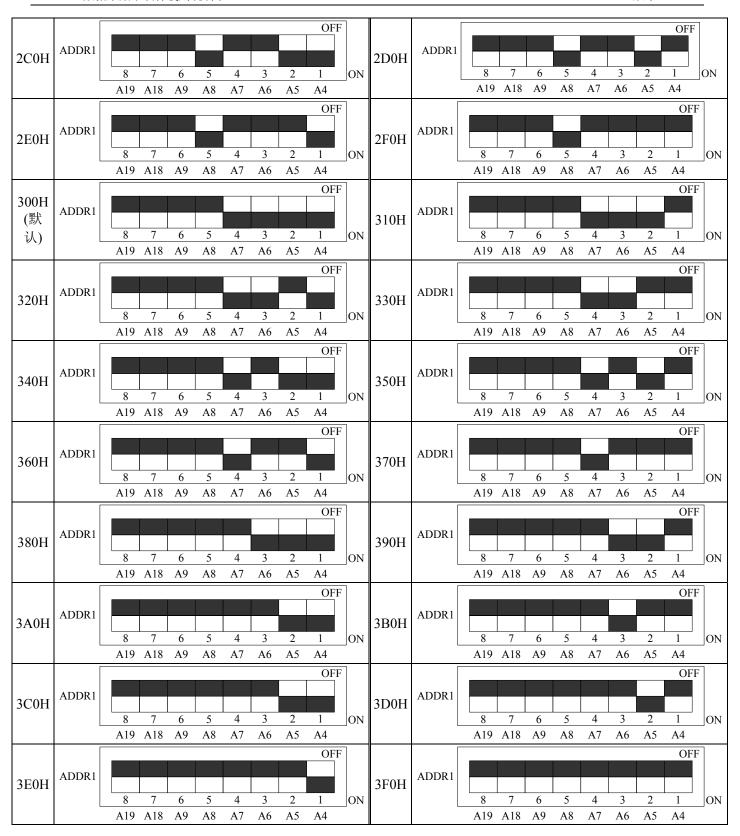
三、板基地址选择

ADDR1: ART2007 板基地址拨码开关。板基地址可设置成 200H~3F0H 之间可被 16 整除的二进制码,板基地址默认为 300H,将占用基地址起的连续 6 个 I/O 地址。开关的第 7、8 位未用,1、2、3、4、5、6 位分别对应地址 A3、A4、A5、A6、A7、A8、A9。拨码开关 ADDR1 置 "ON"低有效值为 0,板基地址选择开关 ADDR1 如下图。



其基地址的配置方法为:


地址位	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
X为可配置位	未用	未用	X	X	Х	X	Х	Х	X	0	0	0
	第3个十六进制位		第2个-	十六进制	位		第1个-	十六进制	位			


注意:表中标识为"0"的位为固定值,只有标识为"x"的位可以由 ADDR1 跳线器改变,因此用户要 正确配置基地址,就只须改变表中的相应位,便可容易的产生的想要的基地址。

比如说出厂默认基地址 300H 的配置,只需将 ADDR1 的 A9、A8 位拨到 "OFF",其余位拨到 "ON"。 如下图:

常用的基地址选择有:

四、指示灯

+3.3V: 3.3V 电源指示灯

第三章 信号输入输出连接器

第一节、模拟信号输入连接器定义

关于 40 芯插头 P2 的管脚定义(图形方式)

AI0	1	5	<u> </u>	2	AI1
AI2	3	_	· •–	4	AI3
AI4	5	9	о <u> —</u>	6	AI5
AI6	7	Ŷ	<u> </u>	8	AI7
AI8	9	Ŷ	о —	10	AI9
AI10	11	Ŷ	о <u> </u>	12	AI11
AI12	13	Z P	о <u> </u>	14	AI13
AI14	15	<u> </u>	<u> </u>	16	AI15
AI16	17	Z F	<u> </u>	18	AI17
AI18	19	C C	<u>-</u>	20	AI19
AI20	21	P	<u> </u>	22	AI21
AI22	23	٦ آ	<u> </u>	24	AI23
AI24	25		о <u> </u>	26	AI25
AI126	27	٦ ٩	<u> </u>	28	AI27
AI28	29		<u> </u>	30	AI29
AI30	31	Ŷ	о О	32	AI31
AGND	33	Ŷ	<u> </u>	34	AGND
NC	35	Ŷ	о О	36	NC
NC	37	P F	о <u> </u>	38	NC
DGND	39		о <u> </u>	40	DGND
			<u> </u>		

关于40芯插头P2的管脚定义(表格形式)

管脚信号名称	管脚特性	管脚功能定义	注释
AI0~AI31	Input	AD模拟量输入管脚,分别对应于32个模拟单端通道,当	
		为双端时,其AI0-AI15分别与AI16-AI31构成信号输入的	
		正负两端,即AI0-AI15接正端,AI16-AI31接负端。	
AGND	GND	模拟信号地, 当输入输出模拟信号时最好用它作为参考地	
NC		未连接	
DGND	GND	数字信号地,当输入输出数字信号时最好用它作为参考地	

第二节、DI 数字量信号输入连接器定义

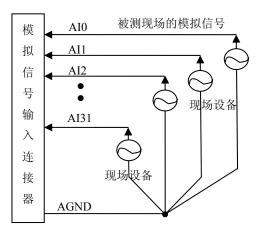
关于40芯插头P1的管脚定义(图片形式)

DGND	1	_	<u>~</u>	2	DGND
DGND	3	_	· -	4	DGND
DGND	5	_	о —	6	DGND
DGND	7	Ŷ	<u> </u>	8	DGND
DO15	9		<u> </u>	10	DO14
DO13	11		о <u> </u>	12	DO12
DO11	13		<u>-</u>	14	DO10
DO9	15			16	DO8
DO7	17		<u>۰</u>	18	DO6
DO5	19	•	<u>۰</u>	20	DO4
DO3	21		<u>۰</u>	22	DO2
DO1	23		<u>۰</u>	24	DO0
DI15	25		<u> </u>	26	DI14
DI13	27	9	<u>۰</u>	28	DI12
DI11	29	P S	۰ -	30	DI10
DI9	31		<u>-</u>	32	DI8
DI7	33	•		34	DI6
DI5	35	P	<u>۰</u>	36	DI4
DI3	37	° S	<u>۰</u>	38	DI2
DI1	39		<u>-</u>	40	DIO
		\Box	<u> </u>		

关于40芯插头P1的管脚定义(表格形式)

管脚信号名称	管脚特性	管脚功能定义
DI0-DI15	Input	数字量输入,其参考地请使用本连接器上的DGND
DO0-DO15	Output	数字量输出,其参考地请使用本连接器上的DGND
DGND	GND	数字地

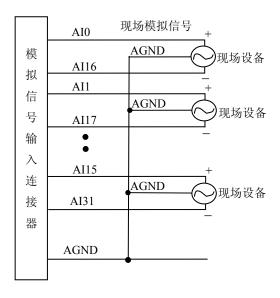
注明:关于DI数字量信号的输入连接方法请参考《<u>DI数字量输入的信号连接方法</u>》章节。 关于DO数字量信号的输出连接方法请参考《<u>DO数字量输出的信号连接方法</u>》章节。

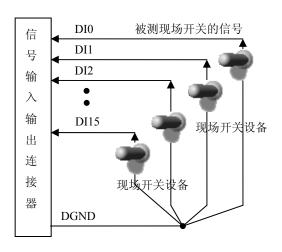


第四章 各种信号的连接方法

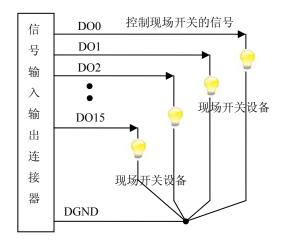
第一节、AD 模拟量输入的信号连接方法

一、AD 单端输入连接方式


单端方式是指使用单个通道实现某个信号的输入,同时多个信号的参考地共用一个接地点。此种方式主 要应用在干扰不大,通道数相对较多的场合。可按下图连接成模拟电压单端输入方式,32路模拟输入信号连 接到AI0~AI31端,其公共地连接到AGND端。


二、AD 双端输入连接方式

双端输入方式是指使用正负两个通路实现某个信号的输入,该方式也叫差分输入方式。此种方式主要应 用在干扰较大,通道数相对较少的场合。单、双端方式的实现由软件设置,请参考ART2007软件说明书。


ART2007板可按下图连接成模拟电压双端输入方式,可以有效抑制共模干扰信号,提高采集精度。16路 模拟输入信号正端接到AI0~AI15端,其模拟输入信号负端接到AI16~AI31端,现场设备与ART2007板共用 模拟地AGND。

第二节、DI 数字量输入的信号连接方法

第三节、DO 数字量输出的信号连接方法

第五章 数据格式、排放顺序及换算关系

第一节、AD 模拟量输入数据格式及码值换算

一、AD 双极性模拟量输入的数据格式

采用原码方式,如下表所示:

输入电压值	AD原始码(二进制)	AD原始码(十六进制)	AD原始码(十进制)
正满度	1 1111 1111 1111	1FFF	8191
正满度-1LSB	1 1111 1111 1110	1FFE	8190
中间值+1LSB	1 0000 0000 0001	1001	4097
中间值(零点)	1 0000 0000 0000	1000	4096
中间值-1LSB	0 1111 1111 1111	0FFF	4095
负满度+1LSB	0 0000 0000 0001	0001	1
负满度	0 0000 0000 0000	0000	0

注明: 当输入量程为±10V、±5V、±2.5V 时,即为双极性输入(输入信号允许在正负端范围变化),下面以标准 C (即 ANSI C) 语法公式说明如何将原码数据换算成电压值:

±10V量程: Volt = (20000.00/8192) * (ADBuffer[0] &0x1FFF) - 10000.00;

±5V 量程: Volt = (10000.00/8192) * (ADBuffer[0] &0x1FFF) - 5000.00;

±2.5V 量程: Volt = (5000.00/8192)*(ADBuffer[0]&0x1FFF) -2500.00;

二、AD 单极性模拟量输入数据格式

采用原码方式,如下表所示:

输入电压值	AD原始码(二进制)	AD原始码(十六进制)	AD原始码(十进制)
正满度	1 1111 1111 1111	1FFF	8191
正满度-1LSB	1 1111 1111 1110	1FFE	8190
中间值+1LSB	1 0000 0000 0001	1001	4097
中间值	1 0000 0000 0000	1000	4096
中间值-1LSB	0 1111 1111 1111	0FFF	4095
零点+1LSB	0 0000 0000 0001	0001	1
零点	0 0000 0000 0000	0000	0

注明: 当输入量程为 $0\sim10V$ 时,即为单极性输入 (输入信号只允许在正端范围变化),下面以标准 C (即 ANSI C) 语法公式说明如何将原码数据换算成电压值:

 $0\sim10V$ 量程: Volt = (10000.00/8192) * (ADBuffer[0] &0x1FFF);

第二节、AD 单通道与多通道采集时的数据排放顺序

一、单通道

当采样通道总数(ADPara.LastChannel – ADPara.FirstChannel + 1)等于1时(即首通道等于末通道),则为单通道采集。

二、多通道

当采样通道总数(ADPara.LastChannel – ADPara.FirstChannel + 1)大于1时(即首通道不等于末通道),则为多通道采集(注意末通道必须大于或等于首通道)。

举例说明, 假设AD的以下硬件参数取值如下:

ADPara. FirstChannel = 0;

ADPara. LastChannel = 2;

第一个字属于通道AIO的第1个点,

第二个字属于通道AII的第1个点,

第三个字属于通道AI2的第1个点,

第四个字属于通道AIO的第2个点,

第五个字属于通道AII的第2个点,

第六个字属于通道AI2的第2个点,

第七个字属于通道AI0的第3个点,

第八个字属于通道AII的第3个点,

第九个字属于通道AI2的第3个点......

则采样的AD数据在ADBuffer[]缓冲区中的排放顺序为: 0、1、2、0、1、2、0、1、2、0、1、2......其他情况依此类推。

第六章 寄存器地址分配表

ART2007 寄存器地址分配表:

偏移地址	读操作时(Read)	写操作时(Write)
		REG_AD_CHANNEL(默认=00000H)
00H	可回读	D[4:0]: First_Channel
		D[12:8]: Last_Channel
02Н	可回读	REG_AD_MODE 输入量程控制 D[15-0]: 先写固定值: 0x8020; 再写 GroundingMode: D[0] = 0,单端; (默认) = 1,双端。 Reserved0: D[10-1] = 000 0000 0000(固定值)。 InputRange 输入范围: D[12-11] = 00: ±10V = 01: ±5V = 10: ±2.5V = 11: 0~10V
04H	可回读	D[15-13] = 101b(固定值); REG_AD_ENABLE, D[0] 对该位先写 1 后写 0 启动一次 AD 转换。
	REG AD DATA STS: AD 数据, D[11-0]为 AD	U后列一次 AD 特换。
06Н	数据, D15 为 bConverting 转换标志, 若等于 1 表示正在转换, 等于 0 表示转换完成	无效
08H	16 路开关量输入 REG_DI,D[15-0]	无效
0AH	可回读	16 路数字量输出 REG DO,D[15-0]。
10H	无效	程控增益 ADGains [D1-D0]:
12H	[D7:D0]:固件版号;	无效
14H	[D15: D0]:硬件版号	无效

第七章 产品的应用注意事项、校准、保修

第一节、注意事项

在公司售出的产品包装中,用户将会找到这本说明书和ART2007板,同时还有产品质保卡。产品质保卡请用户务必妥善保存,当该产品出现问题需要维修时,请用户将产品质保卡同产品一起,寄回本公司,以便我们能尽快的帮用户解决问题。

在使用ART2007板时,应注意ART2007板正面的IC芯片不要用手去摸,防止芯片受到静电的危害。

第二节、AD 模拟量输入的校准

产品出厂时已经校准,只有当用户使用一段时间后,或者改变原来的量程设置时及用户认为需要时才做校准。下面以±10V量程为例,说明校准过程:(其他量程同理)

准备一块5位半精度以上数字电压表,安装好该产品,打开主机电源,预热15分钟。

- 1) 零点校准:选模拟输入的任意一个通道,比如AIO通道,其他通道都接地,将AIO接0伏,在Windows下运行ART2007高级程序,选择0通道,调整RP2使AIO通道的采样值约等于0伏。
- 2)满度校准:选模拟输入的任意一个通道,比如AI0通道接正满度电压9997.55毫伏,其他通道都接地,在Windows下运行ART2007高级程序,选择0通道,调整RP2使AI0通道的采样值接近后等于9997.55毫伏。反复调整RP1直到满足为止。

第三节、保修

ART2007自出厂之日起,两年内凡用户遵守运输,贮存和使用规则,而质量低于产品标准者公司免费修理。

附录 A: 各种标识、概念的命名约定

CN1、CN2......CNn 表示设备外部引线连接器(Connector),如 37 芯 D 型头等, n 为连接器序号(Number).

JP1、JP2......JPn 表示跨接套或跳线器(Jumper), n 为跳线器序号(Number).

AI0、AI1.....AIn 表示模拟量输入通道引脚(Analog Input), n 为模拟量输入通道编号(Number).

AOO、AO1......AOn 表示模拟量输出通道引脚(Analog Output), n 为模拟量输出通道编号(Number).

DIO、DI1......DIn 表示数字量 I/O 输入引脚(Digital Input), n 为数字量输入通道编号(Number).

DO0、DO1......DOn 表示数字量 I/O 输出引脚(Digital Output), n 为数字量输出通道编号(Number).

ATR 模拟量触发源信号(Analog Trigger).

DTR 数字量触发源信号(Digital Trigger).

ADPara 指的是 AD 初始化函数中的 ADPara 参数,它的实际类型为结构体 ART2007_PARA_AD.